On the One-Shot Zero-Error Classical Capacity of Classical-Quantum Channels Assisted by Quantum Non-signalling Correlations

Ching-Yi Lai1,\ast and Runyao Duan1,2,†

1Centre for Quantum Computation & Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, 2007, Australia
2UTS-AMSS Joint Research Laboratory of Quantum Computation and Quantum Information Processing, Academy of Mathematics and Systems Science, Chinese Academy of Science, Beijing 100190, China

(Dated: September 12, 2014)

Shannon discussed the communication problem in the setting of zero errors and connected this problem to the graph theory [1]. It turns out that the zero-error capacity of a channel only depends on its induced confusability graph G and it suffices to discuss the Shannon capacity of a graph G: $\Theta(G) = \sup_m \sqrt{\alpha(G^\otimes m)}$, where $\alpha(G)$ is the independence number of G and $G^\otimes m$ is the m-fold strong product of G with itself. However, $\Theta(G)$ is difficult to determine, even for a simple graph, such as cycle graphs C_n of odd length. Lovász proposed an upper bound $\vartheta(G)$ on the Shannon capacity of a graph G [2], and it is tight in some cases. For example, $\Theta(C_5) = \vartheta(C_5)$. Although $\Theta(C_n)$ for $n \geq 7$ are still unknown, it is close to $\vartheta(C_n)$. However, Haemers showed that it is possible that there is a gap between $\vartheta(G)$ and $\Theta(G)$ for some graphs [3, 4]. It is desired to find additional operational meanings for the Lovász ϑ function.

Recently the problem of zero-error communication has been studied in quantum information theory [5, 6]. Some unexpected phenomena were observed in the quantum case. For example, very noisy channels can be super-activated [7, 8, 9, 10]. In general, entanglement can increase the zero-error capacity of classical channels [11, 12]. Again, entanglement-assisted zero-error capacity is upper-bounded by the Lovász ϑ function [13]. For classical channels, it is suspected that entanglement-assisted zero-error capacity is exactly the Lovász ϑ function [6].

In [14], Cubitt \textit{et al.} considered non-signalling correlations in the zero-error classical communications. Duan and Winter further introduced quantum non-signalling correlations (QNSCs) in the zero-error information theory [15]. QNSCs are completely positive and trace-preserving linear maps $\Pi : \mathcal{L}(A_i) \otimes \mathcal{L}(B_i) \to \mathcal{L}(A_o) \otimes \mathcal{L}(B_o)$ so that the two parties A and B cannot send any information to each other by using Π. Resources, such as shared randomness, entanglement, and classical non-signalling correlations, can be considered as special types of QNSCs.

Suppose $\mathcal{N} : |k\rangle\langle k| \to \rho_k$ is a classical-quantum (C-Q) channel that maps a set of classical states $|k\rangle\langle k|$ into a set of quantum states $\rho_k \in \mathcal{L}(\mathcal{B})$. The one-shot zero-error capacity of the C-Q channel \mathcal{N} assisted by a QNSC Π is equivalent to the largest integer M so that a noiseless classical channel that can send M messages can be simulated by the composition of \mathcal{N} and Π. In [15], Duan and Winter showed that the \textit{one-shot} QNSC-assisted zero-error classical capacity is the integral part of

*chingyi.lai@uts.edu.au
\†runyao.duan@uts.edu.au
Moreover, since cyclotomic cosets α these C-Q channels are the integral part of Z

\[\{ \text{minimum value over all representations and a representation with value } \} \]

This provides a more straightforward operational meaning for the Lovász \(\vartheta(G) \) function.

In this article we consider the type of C-Q channel \(\mathcal{N} : |k\rangle\langle k| \rightarrow |u_k\rangle\langle u_k| \), where \(\{u_0, \cdots, u_{n-1}\} \) is an OOR of a graph \(G \) in some Hilbert space \(\mathcal{B} \). (For convenience, we use the Dirac notation \(|u\rangle \) to denote the quantum state corresponding to the vector \(u \), and vice versa.) It is easy to see that \(\alpha(G) \leq \Upsilon(\mathcal{N}) \leq \vartheta(G) \). We will provide a class of circulant graphs, defined by equal-sized cyclotomic cosets, so that the one-shot QNSC-assisted zero-error classical capacity of their induced C-Q channels are the integral part of

\[\Upsilon(\mathcal{N}) = \vartheta(G). \]

Moreover, since \(\vartheta \) is multiplicative, the asymptotic QNSC-assisted zero-error classical capacity of these C-Q channels are

\[C_{0,\text{NS}}(\mathcal{N}) = \lim_{m \rightarrow \infty} \frac{1}{m} \log \Upsilon(\mathcal{N}^\otimes m) = \log \vartheta(G). \]

This provides a more straightforward operational meaning for the Lovász \(\vartheta \) function.

We first provide an orthonormal representation for any circulant graphs. A circulant graph \(G = X(\mathbb{Z}_n, C) \) has an edge set \(\{(i, j) : i - j \in C\} \), where \(C \) is a subset of \(\mathbb{Z}_n \setminus \{0\} \), called the connection set, and \(-C = C\). The eigenvalues of the adjacency matrix of \(G \) are \(\lambda_k = \sum_{j \in C} e^{2\pi ijk/n} \). Let

\[u_0 = \frac{1}{\sqrt{\vartheta(G)}} \left(1, \sqrt{\frac{\lambda_1 - \lambda_{\min}}{\lambda_{\max} - \lambda_{\min}}}, \cdots, \sqrt{\frac{\lambda_{n-1} - \lambda_{\min}}{\lambda_{\max} - \lambda_{\min}}} \right) \]

and \(u_k = U^k u_0 \), for \(k = 0, \cdots, n-1 \), where \(U = \text{diag}(1, e^{-2\pi i/n}, \cdots, e^{-2(n-1)\pi i/n}) \) is a unitary operator. Then \(\{u_k\} \) is an orthonormal representation of the circulant graph \(G \). If \(G \) is edge-transitive, then \(\{u_k\} \) is an OOR.

Cyclotomic cosets usually appear in the application of coding theory to determine minimal polynomials over finite fields or integer rings [16]. We use a more general concept here. Let \(\mathbb{Z}_n^\times = (\mathbb{Z}/n\mathbb{Z})^\times \) denote the multiplicative group of \(\mathbb{Z}_n \), which consists of the units in \(\mathbb{Z}_n \) and its size is determined by the Euler’s totient function: \(|\mathbb{Z}_n^\times| = \varphi(n) \). Suppose \(q \in \mathbb{Z}_n^\times \). The cyclotomic coset modulo \(n \) over \(q \) which contains \(s \in \mathbb{Z}_n \) is

\[C_s(q) = \{s, sq, sq^2, \cdots, sq^{r_s-1}\}, \]
where \(r_s \) is the smallest positive integer \(r \) so that \(sq^r \equiv s \pmod{n} \). The subscript \(s \) is called the coset representative of \(C(s) \). The cyclotomic cosets are well-defined: \(C(a) = C(b) \) if and only if \(\alpha = \beta q^r \pmod{n} \) for some \(c \in \mathbb{Z} \). Hence any element in a coset can be the coset representative. As a consequence, the integers modulo \(n \) are partitioned into disjointed cyclotomic cosets: \(\mathbb{Z}_n = \bigcup_{j=0}^{p-1} C(\alpha_j) \), where \(\{\alpha_0 = 0, \alpha_1, \ldots, \alpha_{t}\} \) is a set of (disjointed) coset representatives. If \(C(1) = C(-1) \), then we can generate the circulant graph \(G = X(\mathbb{Z}_n, C(1)) \). Assume further that these cyclotomic cosets are equal-sized, except \(C(0) = \{0\} \). That is, \(|C(\alpha)| = |C(1)| \) for any \(\alpha \neq 0 \), and \(n = t|C(1)| + 1 \). A circulant graph defined by these cyclotomic cosets has some interesting properties that are key to the proof of our main theorem: the nontrivial eigenvalues are indexed by the cyclotomic coset representatives and have equal multiplicity.

Next we explicitly construct feasible solutions to the SDP (1) when the C-Q channel \(N \) is induced by these circulant graphs. Let \(s_k = \frac{\vartheta(G)}{n} \), \(R_k = U^k R_0 U^{-k} \), and

\[
R_0 = \frac{1}{n} \left(\mathbb{I} - \sum_{j=0}^{n-1} x_j P_j \right),
\]

where \(x_j = \frac{\lambda_{j\beta} - \lambda_\beta}{\lambda_0 - \lambda_\beta} \), given \(\lambda_\beta = \lambda_{\text{min}} \) for some \(\beta \in \mathbb{Z}_p^\times \). Then the SDP (1) is solved with \(\Upsilon(N) = \vartheta(G) \). A central part of the proof is using the Perron-Frobenius theorem to show that \(R_0 \) is positive semi-definite.

Finally we characterize the graphs defined by equal-sized cyclotomic cosets. A necessary condition is that \(|C(1)| \) is a common divisor of \(\varphi(d) \) for all \(d \mid n \) and \(d > 1 \). It remains to find conditions so that \(C(1) = C(-1) \).

For any odd \(n \geq 3 \), there exists a trivial connection set \(C(1) = \{1, n - 1\} \), which is a cyclotomic coset modulo \(n \) over \(n - 1 \), and it defines the cycle graph \(C_n \). Suppose \(N \) is the C-Q channel induced by the OOR of the cycle graph \(C_n \). Then \(\Upsilon(N) = \vartheta(C_n) = \frac{n \cos \frac{\pi}{n}}{1 + \cos \frac{\pi}{n}} \).

When \(n = p^r \) is a prime power, \(\mathbb{Z}_{p^r}^\times \) is cyclic. Let \(\mathbb{Z}_{p^r}^\times = \langle \alpha \rangle \) for \(\alpha \in \mathbb{Z}_p \), and \(\alpha \) is of order \(\varphi(p^r) \). Consequently, \(-1 \equiv \alpha^{\varphi(p^r)/2} \). Therefore, \(-1 \in C(1) = \langle q \rangle \) if \(q = \alpha^b \) for some \(b \mid (\varphi(p^r)/2) \), and then \(|C(1)| = \frac{\varphi(p^r)}{b} \). Then the graph \(X(\mathbb{Z}_{p^r}, \langle \alpha^{p^r-1} \rangle) \) is defined by equal-sized cyclotomic cosets.

The case is simpler when \(n \) is a prime. Let \(p = 2st + 1 \) be a prime. Suppose \(\mathbb{Z}_p^\times = \langle \alpha \rangle \). Then the graph \(X(\mathbb{Z}_p, \langle \alpha^t \rangle) \) is defined by equal-sized cyclotomic cosets.

When \(t = 2 \), the cosets lead to exactly the Paley graphs or the quadratic residue graphs \(Q\mathcal{R}_p \). A nonzero integer \(a \) is called a quadratic residue modulo \(n \) if \(a = b^2 \pmod{n} \) for some integer \(b \); otherwise, \(a \) is a quadratic nonresidue modulo \(n \). Let \(Q \) denote the set of quadratic residues modulo \(p \). Then \(Q\mathcal{R}_p = X(\mathbb{Z}_p, Q) \) [17]. The Paley graphs are self-complimentary and consequently \(\Theta(Q\mathcal{R}_p) = \vartheta(Q\mathcal{R}_p) = \sqrt{p} \) [2, Theorem 12]. Suppose \(N \) is the C-Q channel induced by the OOR of the Paley graph \(Q\mathcal{R}_p \). Then \(\Upsilon(N) = \vartheta(Q\mathcal{R}_p) = \sqrt{p} \).

When \(t = 3 \), the cosets lead to the cubic residue graphs \(C\mathcal{R}_p \) [19]. A nonzero integer \(a \) is called a cubic residue modulo \(p \) if \(a = b^3 \pmod{p} \) for some integer \(b \). The cyclotomic coset \(C(1) \) consists of cubic residues. \(C\mathcal{R}_p = X(\mathbb{Z}_p, C(1)) \) has three nontrivial eigenvalues, which can be found by the formula for cubic Gauss sum. These three eigenvalues are the roots of \(x^3 - 3px - ap = 0 \), where \(4p = a^2 + b^2 \) and \(a \equiv 1 \pmod{3} \) [20]. Currently the closed form for \(\vartheta(C\mathcal{R}_p) \) is still unknown.

The type of circulant graphs defined by equal-sized cyclotomic cosets bear very a strong symmetry. It is interesting to see if there are other graphs that have this property. For example, we may consider (strongly) regular graphs.
References

