An hybrid security model for quantum cryptography for practical and efficient
information-theoretically secure communication

Romain Alléaume

1Telecom ParisTech - LTCI, CNRS , 46 rue Barrault, 75013 Paris, France

We will present a new security model in quantum cryptography, exploiting the assumption that
any quantum memory is bound to decohere in a finite time during which perfect encryption could
hold. We propose a new quantum cryptographic protocol in this context, and argue that can be it
can offer an efficiency gap (in terms of tolerable losses and errors) compared to QKD.

Recent work on quantum data locking, whose security is based considering the accessible information [1], clearly
illustrates that a relaxation of the composable security criteria that is commonly used in Quantum Key Distribution
(QKD) [2, 3], can allow to design new quantum cryptographic protocols for secure communications, with improved
performances. It is for example known that the locking capacity of a quantum channel is always larger than its private
capacity, while it has recently been proven that quantum data locking schemes could allow to approach the classical
capacity of a quantum channel. [4]

However, all quantum data locking schemes proposed so far rely on the encoding on some classical information into
a large entangled state, a procedure that cannot be easily realized experimentally in the near future.

We propose a new security model for secure communication rely on a public quantum channel and an authenticated
classical channel, between Alice and Bob wherein the eavesdropper E can only store quantum information during a
finite time τ, to technological limits of quantum memory while Alice and Bob can use specific encryption scheme.

We can argue that both of these assumptions can be considered realistic, given the state of current technology:
Decoherence is a fundamental limitation of quantum memory. While decoherence can in principle be handled by
designing and engineering carefully isolated qubits and by using fault-tolerant architectures such as topological codes,
the experimental challenges to progress in this direction remain very important. One could consider for τ an optimistic
upper bound on the coherence time for the coherent storage of a few qubits, and could relatively safely work with
values of τ below a s.

Practical and computationally efficient classical encryption exist, like AES 256. Although such schemes are not
information-theoretically secure, we do not know in practice any classical (or quantum) algorithm to break such
schemes more efficiently than brute-force. We can also note that most practical QKD demonstrations combine QKD
with a classical encryption scheme such as AES, which implicitly assumes that AES security is strong.

We will then present the status of a current work in progress: build an explicit protocol that allows to efficiently
lock classical information, at a rate far beyond the private capacity, without resorting to the use of large entangled
state at the input like in quantum data locking [4].

[1] S Guha, P Hayden, H Krovi, S Lloyd, C Lupo, JH Shapiro, M Takeoka, Quantum enigma machines and the locking capacity