Superconducting qubits

Alexandre Blais
Université de Sherbrooke, Québec, Canada
Which quantum computer is right for you?
Which quantum computer is right for you?
There are many types to choose from. Here’s how they compare and our all-important verdict

<table>
<thead>
<tr>
<th></th>
<th>D-Wave 2</th>
<th>Superconducting qubits</th>
<th>Spin qubits</th>
<th>Trapped ion qubits</th>
<th>Topological qubits</th>
<th>Photonic qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated time before useful (years)</td>
<td>1</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Apps</td>
<td></td>
<td>🟥 💛 💛 💛 💛 💛</td>
<td>🟥 💛 💛 💛 💛</td>
</tr>
<tr>
<td>Room temperature operation in future</td>
<td></td>
<td>🌻</td>
<td>🌻</td>
<td>🌻</td>
<td>🌻</td>
<td>🌻</td>
</tr>
<tr>
<td>Error correction</td>
<td></td>
<td>🌻</td>
<td>🌻</td>
<td>🌻</td>
<td>🌻</td>
<td>🌻</td>
</tr>
<tr>
<td>Upgradeability</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
</tr>
<tr>
<td>Quantumness</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
</tr>
<tr>
<td>Ease of use</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
<td>🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻 🌻</td>
</tr>
</tbody>
</table>

New Scientist says ⭐⭐⭐⭐⭐⭐⭐
Quantum information processing: the challenge

Qubits: Two-level systems

Two-qubit entangling gates

Qubit readout

Single-qubit control

• Conflicting requirements: long-lived quantum effects, fast control and readout

Outline

• Artificial atoms
 • Physics 101: Harmonic oscillators and basic electrical circuits
 • Superconductivity and Josephson junctions

• Circuit QED: a possible QC architecture

• Recent realizations and challenges
‘Atomic atoms’

- Control by shining laser tuned at the desired transition frequency

- Hyperfine levels of $^9\text{Be}^+$ have long relaxation and dephasing times

$$T_1 \sim \text{a few years} \quad T_2 \gtrsim 10 \text{ seconds}$$

Relaxation and dephasing times

- T_1: Relaxation = amplitude damping channel ≠ bit flip channel

\[|1\rangle \quad \rightarrow \quad |0\rangle \]

\[\text{(Energy is conserved)} \]

\[e^{-t/T_1} = e^{-\gamma_1 t} \]

- T_2: Dephasing = phase damping channel = phase flip channel

\[|\psi\rangle = c_0|0\rangle + c_1|1\rangle \rightarrow \rho = \begin{pmatrix} |c_0|^2 & c_0 c_1^* e^{-t/T_2} \\ c_0^* c_1 e^{-t/T_2} & |c_1|^2 \end{pmatrix} \]

\[e^{-t/T_2} = e^{-\gamma_2 t} \]
‘Atomic atoms’

- Control by shining laser tuned at the desired transition frequency
- Hyperfine levels of $^9\text{Be}^+$ have long relaxation and dephasing times
 \[T_1 \sim \text{a few years} \quad T_2 \gtrsim 10\ \text{seconds} \]
- Reasonably short gate time
 \[T_{\text{not}} \sim 5\ \mu\text{s} \]
- Low error per gates: $\sim 0.48\%$

$E_{01} = E_1 - E_0 = \hbar \omega_{01}$

\[\begin{align*}
|0\rangle & \quad \text{Energy} \quad |1\rangle \\
|2\rangle &
\end{align*} \]

Artificial atoms

- Based on microfabricated circuit elements
- Well defined energy levels
- Nonlinear distribution of energy levels
- Maximize numbers of thumbs up!
Avoiding dissipation: superconductivity

- Normal metals dissipate energy

- No resistance in superconducting state ⇒ no dissipation

- Superconductivity is a (macroscopic) quantum effect

- A good starting point for a quantum device...
Basic circuit elements (classical version)

Capacitor:
- Two metal plates separated by an insulator
- Relates voltage to charge

\[Q = CV \]

Inductor:
- A non-resistive wire
- Relates voltage to change of current

\[V = L \frac{dI}{dt} \]

\[\Phi = LI \]

\[\Phi = \int_{-\infty}^{t} dt' V(t') \]
Basic circuit elements *(classical version)*

Capacitor:
- Two metal plates separated by an insulator
- Relates voltage to charge

\[Q = CV \]

Inductor:
- A non-resistive wire
- Relates voltage to change of current

\[V = L \frac{dI}{dt} \]

Current:
Change of charge in time

\[I = \frac{dQ}{dt} \]
Basic circuit elements \textit{(classical version)}

Voltage is the same across L and C:

\[\frac{Q}{C} = L \frac{d^2 Q}{dt^2} \]

\[Q(t) = Q(0) \cos(\omega_{LC} t) \quad \omega_{LC} = \frac{1}{\sqrt{LC}} \]

Capacitor:
- Two metal plates separated by an insulator
- Relates voltage to charge

\[Q = CV \]

Inductor:
- A non-resistive wire
- Relates voltage to change of current

\[V = L \frac{dI}{dt} \]

Standard toolkit

Capacitor (C)

Inductor (L)

Resistor (R)

LC oscillator
Basic circuit elements (classical version)

Oscillations of the charge:

\[Q(t) = Q(0) \cos(\omega_{LC} t) \]

\[\omega_{LC} = \frac{1}{\sqrt{LC}} \]

One out of countless examples of harmonic oscillator
Classical harmonic oscillator

Energy at arbitrary x: \[H = \frac{p^2}{2m} + \frac{1}{2}kx^2 \]

= Hamiltonian

Frequency of oscillation: \[\omega = \sqrt{\frac{k}{m}} \]
Quantum harmonic oscillator

Energy at arbitrary x:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}k\hat{x}^2$$

= Hamiltonian

Heisenberg uncertainty principle:
Impossible to know precisely both x and p

Classical variables are promoted to hermitian operator acting on Hilbert space

$$x \rightarrow \hat{x} \quad p \rightarrow \hat{p} \quad [\hat{x}, \hat{p}] = i\hbar$$
Quantum harmonic oscillator

Energy at arbitrary x:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}k\hat{x}^2$$

Classical variables are promoted to hermitian operator acting on Hilbert space

$$x \rightarrow \hat{x} \quad p \rightarrow \hat{p} \quad [\hat{x}, \hat{p}] = i\hbar$$

Useful to introduce:

$$\hat{a} = \left(\frac{mk}{4\hbar^2}\right)^{1/4} \left(\hat{x} + i\frac{\hat{p}}{\sqrt{mk}}\right)$$

$$\hat{a}^\dagger = \left(\frac{mk}{4\hbar^2}\right)^{1/4} \left(\hat{x} - i\frac{\hat{p}}{\sqrt{mk}}\right)$$

Commutation relation:

$$[\hat{x}, \hat{p}] = i\hbar \rightarrow [\hat{a}, \hat{a}^\dagger] = 1$$

$$\hat{H} = \hbar\omega\hat{a}^\dagger\hat{a} = \hbar\omega\hat{n}$$

$$\omega = \sqrt{\frac{k}{m}}$$
Quantum harmonic oscillator

\[\hat{H} = \hbar \omega \hat{a}^\dagger \hat{a} = \hbar \omega \hat{n} \quad \quad [\hat{a}, \hat{a}^\dagger] = 1 \quad \quad \hat{n} |n\rangle = n |n\rangle \]

What is the action of \(\hat{a} \) and \(\hat{a}^\dagger \) on the eigenstates of \(\hat{n} \)?

First observation: \([\hat{n}, \hat{a}] = -\hat{a} \) and \([\hat{n}, \hat{a}^\dagger] = \hat{a}^\dagger \)

\[\Rightarrow \hat{n}(\hat{a} |n\rangle) = \hat{a} \hat{n} |n\rangle - \hat{a} |n\rangle = (n - 1) \hat{a} |n\rangle \]

\[\hat{a} |n\rangle \propto |n - 1\rangle \]

Second observation: \(||\hat{a} |n\rangle||^2 = \langle n | \hat{a}^\dagger \hat{a} | n \rangle = \langle n | \hat{n} | n \rangle = n \quad \Rightarrow \quad n \in \mathbb{N}_0 \)

\[\hat{a} |n\rangle = \sqrt{n} |n - 1\rangle \quad \quad \hat{a}^\dagger |n\rangle = \sqrt{n + 1} |n + 1\rangle \]
Quantum harmonic oscillator

\[\hat{H} = \hbar \omega \hat{a}^{\dagger} \hat{a} = \hbar \omega \hat{n} \]
\[\hat{n} |n\rangle = n |n\rangle \quad n \geq 0 \]
\[\hat{a} |n\rangle = \sqrt{n} |n - 1\rangle \]
\[\hat{a}^{\dagger} |n\rangle = \sqrt{n + 1} |n + 1\rangle \]

\[\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2} k\hat{x}^2 \]
\[\omega = \sqrt{k/m} \]

Flux: \[\Phi = \int dtV(t) \]

\[\hat{a}^{\dagger} = \left(\frac{C}{4L\hbar^2} \right)^{1/4} \left(\hat{\Phi} - i \frac{\hat{Q}}{\sqrt{C/L}} \right) \]

\(\hat{a}^{\dagger} \) adds a photon to the LC circuit

- \(n \) = number of photons stored in the LC circuit
- Magnetic field
- Electric field

Energy

\[\hbar \omega \]

\[\hbar \omega \]

\[\hbar \omega \]

Flux, \(\Phi \)

|0⟩

|1⟩

|2⟩

|3⟩
Artificial atom

- Initialization to ground state is simple

\[\omega_{01} = \frac{1}{\sqrt{LC}} \approx 10 \text{ GHz} \]
\[\approx 0.5 \text{ K} \]

- Not a good «two-level» atom, not a qubit…
Josephson junction

Josephson junctions

Superconductor (Al)
Insulator (AlO_x)
Superconductor (Al)

Standard toolkit

Capacitor (C)
Inductor (L)
Resistor (R)
Josephson junctions

Standard toolkit:
- Capacitor (C)
- Inductor (L)
- Resistor (R)

Josephson junctions:

Scale: 100 nm
Artificial atom toolkit

Capacitor (C):
- Two metal plates separated by an insulator
- Relates voltage to charge

\[Q = CV \]

Inductor (L):
- A non-resistive wire
- Relates current to flux

\[V = L \frac{dI}{dt} \]

Josephson junction:
- Two superconductors separated by an insulator
- Relates current to flux

\[\Phi = L I \]
\[\Phi = \int_{-\infty}^{t} dt' V(t') \]

\[I = I_0 \sin(2\pi \Phi / \Phi_0) \]
Superconducting artificial atom

- Very short π-pulse time
 \[T_\pi \sim 4 - 20 \text{ ns} \]
- Big improvements in relaxation and dephasing times in last 10 years
- Error per gates of 0.2%, similar to trapped ion results

\[
V(t) = V_0 \cos \omega_0 t
\]

Superconducting *transmon* qubits
Superconducting qubits, a family tree

Charge
- NEC, Saclay, 1999

Phase
- NIST 2002

Flux
- Delft, 1999

Quantronium
- Saclay, 2002

Transmon
- Yale, 2007

xmon
- UCSB, 2013

Fluxonium
- Yale, 2009
Circuit QED

\[\hat{V} = V_0 \cos(\omega t) \]
Circuit QED

\[V(t) = V_0 \cos \omega_0 t \]
Circuit QED: Multi-qubit architecture

\[V(t) = V_0 \cos(\omega_0 t) \]

\[V(t) = V_0 \cos(\omega_0 t) \]
Circuit QED: Resonant and dispersive regimes

Resonant regime:
- Identical 0-1 transition frequencies
- Energy exchange between qubits and oscillator
- Oscillator acts as quantum bus for entangling qubits

Dispersive regime:
- Different 0-1 transition frequencies
- No energy exchange between qubits and oscillator
- Qubit-state dependent oscillator frequency leads allows qubit readout
Circuit QED: Multi-qubit architecture

Quantum bus: entangling gates and readout

Single-qubit control
Circuit QED: ‘1D’ realization

Circuit QED: ‘1D’ realization

Circuit QED: scaling up
Circuit QED: Multi-qubit architecture

\[V(t) = V_0 \cos \omega_0 t \]

Long-range qubit-qubit interactions
Circuit QED: alternative architecture

\[V(t) = V_0 \cos \omega_0 t \]

Individual qubit readout

Two-qubit gates

Short-range qubit-qubit interactions
Circuit QED: recent realizations and challenges
10 years of circuit QED

Quantum optics on a chip with artificial atoms
Quantum information processing
Past, present and future

- Operation on single physical qubits
- Algorithms on multiple physical qubits
- QND measurement for error correction and control
- Logical memory with longer lifetime than physical qubits
- Operations on single logical qubits
- Algorithms on multiple logical qubits
- Fault-tolerant quantum computation

Complexity

Time

Superconducting qubits
Trapped ions
Rydberg atoms
Spin qubits

High-fidelity gates and readout

Gates

Single-qubit gate
- Average fidelity: > 99.92%
- Error when simultaneously operating neighbour qubits: < 10^{-4}
 - UCSB: Nature 508, 500 (2014)

Two-qubit gate (direct)
- Average fidelity: up to 99.4%
 - UCSB: Nature 508, 500 (2014)

Two-qubit gate (via bus)
- Average fidelity: > 96.75%
 - IBM: PRL 109, 060501 (2012)

Readout

Single-qubit readout
- Fidelity: up to 99.8% in 140 ns
 - UCSB: PRL 112, 190504 (2014)

Two-qubit readout (logical basis)
- Fidelity: > 90%

Two-qubit readout (Bell basis)
- Bell state concurrence: ~ 35%
 - UCB: PRL 112, 170501 (2014)

Complexity

Max number of qubits and resonators
- Direct: 9 qubits and 10 resonators
 - UCSB: 1411.7403
- Bus: 5 qubits and 7 resonators
 - Delft: 1411.5542
Recent realizations

Simple algorithms

Deutsch–Jozsa

Grover (N=4)
Saclay: PRB **85**, 140503 (2012)

QFT
UCBS: Science **334**, 61 (2011)

Shor (15; compiled)

Protocols

Deterministic teleportation
ETH Zurich: Nature **500**, 319 (2013)

Quantum error correction

3-qubit code
Yale: Nature **482**, 382 (2011)
Recent realizations

Simple algorithms

Deutsch–Jozsa

Grover (N=4)
Saclay: PRB 85, 140503 (2012)

QFT
UCBS: Science 334, 61 (2011)

Shor (15; compiled)
UCBS: Nature Physics 8, 719 (2012)

Protocols

Deterministic teleportation
ETH Zurich: Nature 500, 319 (2013)

Quantum error correction

3-qubit code
Yale: Nature 482, 382 (2011)

Error detection via parity meas.
« ... using a two-by-two lattice of superconducting qubits to perform syndrome extraction and arbitrary error detection via simultaneous quantum non-demolition stabilizer measurements. This lattice represents a primitive tile for the surface code ... »

IBM: 1410.6419
Delt: 1411.5542
Recent realizations

Simple algorithms

Deutsch–Jozsa

Grover (N=4)
Saclay: PRB 85, 140503 (2012)

QFT
UCBS: Science 334, 61 (2011)

Shor (15; compiled)
UCBS: Nature Physics 8, 719 (2012)

Protocols

Deterministic teleportation
ETH Zurich: Nature 500, 319 (2013)

Quantum error correction

Error detection via parity meas.

«... we report the protection of classical states from environmental bit-flip errors and demonstrate the suppression of these errors with increasing system size.»

Data qubit avg.
5 qubit R.C.
9 qubit R.C.

Probability, Fidelity

Total repetition code cycles - k

UCSB: 1411.7403
Past, present and future

- Operation on single physical qubits
- Algorithms on multiple physical qubits
- QND measurement for error correction and control
- Logical memory with longer lifetime than physical qubits
- Operations on single logical qubits
- Algorithms on multiple logical qubits
- Fault-tolerant quantum computation

Complexity

Time
Under the rug…
Summary

- Artificial atoms based on Josephson junctions
 - Low error per gate
 - Steady improvement
- Circuit QED
 - Resonator acts as bus for entangling gates
 - Dispersive regime: high-fidelity qubit readout
- Basic protocols being implemented
Superconducting qubits and circuit QED
Quantum error correction, quantum algorithms, ...
Quantum dots, NV centers, ...
Full counting statistics and quantum noise

Postdoc and PhD positions available!

Visit us @ http://epiq.physique.usherbrooke.ca/