Upper bounds for query complexity inspired by the Elitzur-Vaidman bomb tester

Cedric Yen-Yu Lin, Han-Hsuan Lin

Center for Theoretical Physics
MIT

QIP 2015
January 12, 2015

arXiv:1410.0932
Overview

1. Bomb Query Complexity
 - Elitzur-Vaidman bomb tester
 - Bomb query complexity $B(f)$
 - Main result: $B(f) = \Theta(Q(f)^2)$

2. Algorithms
 - Introduction: $O(N)$ bomb query algorithm for OR
 - Main theorem 2: constructing q. algorithms from c. ones
 - Applications: graph problems

3. Summary and open problems
Section 1

Bomb Query Complexity
A collection of bombs, some of which are duds

Live: Explodes on contact with photon
Dud: No interaction with photon

Can we tell them apart without blowing ourselves up?
We can put a bomb in an Mach-Zehnder interferometer:

If $D2$ detects a photon, then we know the bomb is live, even though it has not exploded.

We can rewrite the Elitzur-Vaidman bomb in the circuit model:

\[|0\rangle \rightarrow I \text{ or } X \rightarrow \text{explode if 1} \]

Live bomb: X in the above diagram

Dud: I in the above diagram
Let \(R(\theta) = \exp(i\theta X) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \).

\[\langle 0 | R(\theta) \cdot R(\theta) \cdot |0\rangle \]

\(\pi/(2\theta) \) times in total
Let $R(\theta) = \exp(i\theta X) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

\[|0\rangle R(\theta) = |0\rangle, \quad |1\rangle R(\theta) = |1\rangle \quad \text{times in total} \]

$\pi/(2\theta)$ times in total

If dud: Ctrl-1 does nothing, so $|0\rangle$ gets rotated to $|1\rangle$.

Cedric Lin, Han-Hsuan Lin (MIT) Upper bounds inspired by EV bomb tester January 12, 2015 8 / 39
Quantum Zeno Effect [KWH+95]

Let $R(\theta) = \exp(i\theta X) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

If live: First register is projected back to $|0\rangle$ on each measurement.

Probability of explosion: $\Theta(\theta^2) \times \Theta(1/\theta) = \Theta(\theta)$.

$\pi/(2\theta)$ times in total
Quantum Zeno Effect [KWH+95]

Let $R(\theta) = \exp(i\theta X) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

\[|0\rangle \xrightarrow{R(\theta)} |0\rangle \quad \text{or} \quad |0\rangle \xrightarrow{I \text{ or } X} |0\rangle \quad \pi/(2\theta) \text{ times in total} \]

Probability of explosion: $\Theta(\theta)$

Number of queries: $\Theta(1/\theta)$
Quantum query

\[|r\rangle \quad O_x \quad |r \oplus x_i\rangle \]

\[|i\rangle \quad |i\rangle \]

Quantum Query
Quantum query vs Bomb Query

Quantum query

\[|r\rangle \quad O_x \quad |r \oplus x_i\rangle \]
\[|i\rangle \quad O_x \quad |i\rangle \]

Bomb query

\[|c\rangle \quad O_x \quad |c\rangle \quad \text{bomb} \]
\[|0\rangle \quad O_x \quad |0\rangle \]
\[|i\rangle \quad |i\rangle \]

Explodes if \(c \cdot x_i = 1 \)
Bomb Query

\[|c\rangle \cdot x_i = 1 \]

explodes if \(c \cdot x_i = 1 \)

Differences from quantum query:

- Extra control register \(c \).
- The record register, where we store the query result, \textit{must} contain 0 as input.
- \textit{We must} measure the query result after each query; if the result is 1, the bomb explodes and the algorithm fails.
Bomb Query

If \(c \cdot x_i = 1 \), the bomb explodes. This is equivalent to

\[
|c\rangle \quad \text{explodes if } c \cdot x_i = 1
\]

The equivalent circuit is:

\[
\begin{align*}
|c\rangle & \quad \text{explodes if } c \cdot x_i = 1 \\
\left(1 - c \cdot x_i\right)|i\rangle & \quad \text{where is controlled by } P_{x,0}
\end{align*}
\]

where

\[
P_{x,0} = \sum_{x_i=0} |i\rangle \langle i|, \quad \text{Ctrl} - P_{x,0} = I - \sum_{x_i=1} |1, i\rangle \langle 1, i|
\]
Call the minimum number of bomb queries needed to determine f with bounded error, with probability of explosion $\leq \epsilon$, the bomb query complexity $B_\epsilon(f)$.
Main Theorem

Theorem

\[B_ε(f) = Θ(Q(f)^2 / ε). \]

Upper bound: Quantum Zeno effect.

Lower bound: Adversary method.
$B_{\epsilon}(f) = O(Q(f)^2 / \epsilon)$: Proof

We can simulate each quantum query using $\Theta(1/\theta)$ bomb queries:

$$|r\rangle \cdots |r \oplus x_i\rangle$$

$$|0\rangle \cdots |0\rangle \text{ (discard)}$$

$$|i\rangle \cdots |i\rangle$$

repeat $\pi/2\theta$ times
repeat $\pi/2\theta$ times

Total probability of explosion: $\Theta(\theta) \cdot Q(f) = \Theta(\epsilon)$, if $\theta = \Theta(\epsilon/Q(f))$.

Total number of bomb queries: $\Theta(1/\theta) \cdot Q(f) = O(Q(f)^2 / \epsilon)$.
The proof uses the general-weight adversary method [HLS07]. We know [Rei09, Rei11, LMR+11] that the general-weight adversary bound tightly characterizes quantum query complexity:

$$\text{Adv}^{\pm}(f) = \Theta(Q(f)).$$

By modifying the proof of the general-weight adversary bound, we can show that

$$B_{\epsilon}(f) = \Omega(\text{Adv}^{\pm}(f)^2/\epsilon).$$

This implies that

$$B_{\epsilon}(f) = \Omega(Q(f)^2/\epsilon).$$
Section 2

Algorithms
There are N bombs, want to check if any are live.

Check each bomb using $\Theta(\epsilon^{-1})$ queries, or $O(N/\epsilon)$ queries in total.

Each live bomb has $\Theta(\epsilon)$ chance of exploding.
Each dud has no chance of exploding.

Since we can stop at the first live bomb, the total chance of failure is only $\Theta(\epsilon)$. Therefore $B_\epsilon(OR) = O(N/\epsilon)$.
Since $B(OR) = O(N)$, $Q(OR) = O(\sqrt{N})$.

This is a nonconstructive proof of the existence of Grover’s algorithm!

Can we generalize this further?
Suppose there is a classical randomized algorithm A that computes $f(x)$ using at most T queries. Moreover, suppose there is an algorithm G that predicts the results of each query A makes (0 or 1), making at most an expected G mistakes.

Then $B(f) = O(TG)$, and $Q(f) = O(\sqrt{TG})$.
Main Theorem 2

Suppose there is a classical randomized algorithm A that computes $f(x)$ using at most T queries. Moreover, suppose there is an algorithm G that predicts the results of each query A makes (0 or 1), making at most an expected G mistakes.

Then $B(f) = O(TG)$, and $Q(f) = O(\sqrt{TG})$.

For example, for OR we have $T = N$ and $G = 1$, so $Q(f) = O(\sqrt{N})$.
For each classical query, check whether G correctly predicts the query result of A using $\Theta(G/\epsilon)$ bomb queries.

If G guesses incorrectly then the probability of explosion is $O(\epsilon/G)$; otherwise it is zero. (This actually requires defining an equivalent symmetric variant of the bomb query complexity.)

The total probability of explosion is $O(\epsilon/G) \cdot G = O(\epsilon)$, and the number of bomb queries used is $O(G/\epsilon) \cdot T = O(TG/\epsilon)$.
Explicit q. algorithm with \(Q(f) = O(\sqrt{TG}) \)

Repeat until all queries of \(\mathcal{A} \) are determined:

1. Use \(\mathcal{G} \) to predict all remaining queries of \(\mathcal{A} \), under assumption it makes no mistakes.
2. Search for the location \(d_j \) of first mistake, using \(O(\sqrt{d_j - d_j - 1}) \) quantum queries.
3. This determines the actual query results up to the \(d_j \)-th query that \(\mathcal{A} \) would have made.

Kothari’s algorithm for oracle identification [Kot14] actually already uses these steps above.
Explicit q. algorithm with $Q(f) = O(\sqrt{TG})$

Repeat until all queries of \mathcal{A} are determined:

1. Use \mathcal{G} to predict all remaining queries of \mathcal{A}, under assumption it makes no mistakes.

2. Find the location d_j of first mistake, using $O(\sqrt{d_j - d_{j-1}})$ queries to the black box.

3. This determines the actual query results up to the d_j-th query that \mathcal{A} would have made.

<table>
<thead>
<tr>
<th>i</th>
<th>2</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>12</th>
<th>7</th>
<th>6</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Explicit q. algorithm with $Q(f) = O(\sqrt{TG})$

Repeat until all queries of \mathcal{A} are determined:

1. Use \mathcal{G} to predict all remaining queries of \mathcal{A}, under assumption it makes no mistakes.

2. Find the location d_j of first mistake, using $O(\sqrt{d_j - d_{j-1}})$ queries to the black box.

3. This determines the actual query results up to the d_j-th query that \mathcal{A} would have made.

<table>
<thead>
<tr>
<th>i</th>
<th>2</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>12</th>
<th>7</th>
<th>6</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Explicit q. algorithm with $Q(f) = O(\sqrt{TG})$

Repeat until all queries of A are determined:

1. Use G to predict all remaining queries of A, under assumption it makes no mistakes.

2. Find the location d_j of first mistake, using $O(\sqrt{d_j - d_{j-1}})$ queries to the black box.

3. This determines the actual query results up to the d_j-th query that A would have made.

<table>
<thead>
<tr>
<th>i</th>
<th>2</th>
<th>5</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Explicit q. algorithm with $Q(f) = O(\sqrt{TG})$

Repeat until all queries of \mathcal{A} are determined:

1. Use \mathcal{G} to predict all remaining queries of \mathcal{A}, under assumption it makes no mistakes.

2. Find the location d_j of first mistake, using $O(\sqrt{d_j - d_{j-1}})$ queries to the black box.

3. This determines the actual query results up to the d_j-th query that \mathcal{A} would have made.

<table>
<thead>
<tr>
<th>i</th>
<th>2</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>10</th>
<th>1</th>
<th>15</th>
<th>7</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Explicit q. algorithm with $Q(f) = O(\sqrt{TG})$

Repeat until all queries of \mathcal{A} are determined:

1. Use \mathcal{G} to predict all remaining queries of \mathcal{A}, under assumption it makes no mistakes.
2. Find the location d_j of first mistake, using $O(\sqrt{d_j - d_{j-1}})$ queries to the black box.
3. This determines the actual query results up to the d_j-th query that \mathcal{A} would have made.

<table>
<thead>
<tr>
<th>i</th>
<th>2</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>10</th>
<th>1</th>
<th>15</th>
<th>7</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Explicit q. algorithm with $Q(f) = O(\sqrt{TG})$

Repeat until all queries of \mathcal{A} are determined:

1. Use \mathcal{G} to predict all remaining queries of \mathcal{A}, under assumption it makes no mistakes.

2. Find the location d_j of first mistake, using $O(\sqrt{d_j - d_{j-1}})$ queries to the black box.

3. This determines the actual query results up to the d_j-th query that \mathcal{A} would have made.

<table>
<thead>
<tr>
<th>i</th>
<th>2</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>10</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Explicit q. algorithm with \(Q(f) = O(\sqrt{TG}) \)

- Repeat until all queries of \(\mathcal{A} \) are determined:
 1. Use \(\mathcal{G} \) to predict all remaining queries of \(\mathcal{A} \), under assumption it makes no mistakes.
 2. Find the location \(d_j \) of first mistake, using \(O(\sqrt{d_j - d_{j-1}}) \) queries to the black box.
 3. This determines the actual query results up to the \(d_j \)-th query that \(\mathcal{A} \) would have made.

Query complexity: \(O(G) \cdot O(\sqrt{T/G}) = O(\sqrt{TG}) \).
It looks like error reduction may give extra log factors, but [Kot14] showed that the log factors can be removed using span programs.
Applications: Breadth First Search

Problem: Unweighted Single-Source Shortest Paths
Given the adjacency matrix of an unweighted graph as a black box, find the distances from a vertex \(s \) to all other vertices.

Classical algorithm: *Breadth First Search*.

Breadth First Search

1. Initialize an array \(\text{dist} \) that will hold the distances of the vertices from \(s \). Set \(\text{dist}[s] := 0 \), and \(\text{dist}[v] := \infty \) for \(v \neq s \).

2. For \(d = 1, \ldots, n - 1 \):

 1. For all vertices \(v \) with \(\text{dist}[v] = d - 1 \), query its outgoing edges \((v, w) \) to all vertices \(w \) whose distance we don't know \((\text{dist}[w] = \infty) \). If \((v, w) \) is an edge, set \(\text{dist}[w] := d \).
BFS: Quantum Query Complexity

Breadth First Search

1. Initialize an array dist that will hold the distances of the vertices from s. Set $\text{dist}[s] := 0$, and $\text{dist}[v] := \infty$ for $v \neq s$.

2. For $d = 1, \ldots, n - 1$:
 1. For all vertices v with $\text{dist}[v] = d - 1$, query its outgoing edges (v, w) to all vertices w whose distance we don’t know ($\text{dist}[w] = \infty$). If (v, w) is an edge, set $\text{dist}[w] := d$.

Worst case query complexity is $T = O(n^2)$, where n is no. of vertices. If we guess that each queried pair (v, w) is not an edge, then we make at most $G = n - 1$ mistakes, since each vertex is only discovered once.

$Q(\text{uSSSP}) = O(\sqrt{TG}) = O(n^{3/2})$, matches lower bound of [DHH+04].
Applications: k-Source Shortest Paths

What if we instead want the distances from k different sources?

Problem: Unweighted k-Source Shortest Paths

Given the adjacency matrix of an unweighted graph as a black box, find the distances from vertices s_1, \cdots, s_k to all other vertices.

Classical: Run BFS k times.

Quantum: $G = k(n - 1)$, but $T = O(n^2)$ instead of $O(kn^2)$. Therefore $Q(kSSP) = O(k^{1/2}n^{3/2})$.

Dhariwal and Mayar showed tight lower bound; available on S. Aaronson’s blog, Dec. 26, 2014:
http://www.scottaaronson.com/blog/?p=2109
Problem: Maximum Bipartite Matching

A *matching* in an undirected graph is a set of edges that do not share vertices. Given a bipartite graph, find a matching with the maximum possible number of edges.

Classical algorithm: Hopcroft-Karp algorithm. Essentially proceeds by using $O(\sqrt{n})$ rounds of BFS and modified DFS (depth-first search).

Quantum: $G = O(\sqrt{n} \times n) = O(n^{3/2})$, and $T = O(n^2)$ (not $O(n^{2.5})$). Therefore $Q(MBM) = O(n^{7/4})$. First nontrivial upper bound!
Inspired by the EV bomb tester, we defined the notion of *bomb query complexity*, and showed the relation $B(f) = \Theta(Q(f)^2)$.

Bomb query complexity further lead us to a general construction of quantum query algorithms from classical algorithms, giving us an $O(n^{1.75})$ quantum query algorithm for maximum bipartite matching.
Open Questions

- Can we relate G, the number of wrong guesses, to classical measures of query complexity (e.g. certificate, sensitivity...)?
- Time complexity of algorithms?
- Algorithms for adjacency list model?
- Other problems e.g. matching for general graphs?
- Relationship between $R(f)$ and $B(f)$?
For total functions the largest known separation between \(R(f) \) and \(Q(f) \) is quadratic (for the OR function). It is conjectured this is the extreme case, \(R(f) = O(Q(f)^2) \).

We know that \(B(f) = \Theta(Q(f)^2) \). Therefore the conjecture is equivalent to \(R(f) = O(B(f)) \).

We give some motivation for why this conjecture might be true...
Projective Query Complexity, $P(f)$

Aaronson (unpublished, 2002) considered allowing access to the black box only with the following:

\[
\begin{array}{c}
|c\rangle \\
|0\rangle \\
|i\rangle \\
\end{array} \quad \begin{array}{c}
\begin{array}{c}
O_x \\
\end{array} \\
\end{array} \quad \begin{array}{c}
|c\rangle \\
|0\rangle \\
|i\rangle \\
\end{array}
\]

\[c \cdot x_i\]

We call the number of queries required the *projective query complexity*, $P(f)$. Note the algorithm does *not* end on measuring a 1.

Straightforwardly $Q(f) \leq P(f) \leq R(f)$ and $P(f) \leq B(f)$.

Regev and Schiff [RS08]: $P(\text{OR}) = \Omega(N)$.

Open question: Does $P(f) = \Theta(R(f))$ for all total functions? If this is true, implies $R(f) = O(B(f)) = O(Q(f)^2)$.
Thank You!