A multiprover interactive proof system for the local Hamiltonian problem

Thomas Vidick Caltech

Joint work with Joseph Fitzsimons SUTD and CQT, Singapore

Outline

1. Local verification of classical \& quantum proofs
2. Quantum multiplayer games
3. Result: a game for the local Hamiltonian problem
4. Consequences:
a) The quantum PCP conjecture
b) Quantum interactive proof systems

Local verification of classical proofs

- NP = \{ decision problems "does x have property P ?"
that have polynomial-time verifiable proofs \}
- Ex: Clique, chromatic number, Hamiltonian path
- 3D Ising spin
- Pancake sorting, Modal logic S5-Satisfiability, Super Mario, Lemmings
- Cook-Levin theorem: 3-SAT is complete for NP Graph $G \rightarrow$ 3-SAT formula φ
- Consequence: all problems in NP have local verification ${ }^{G} 3$-colorable $\Leftrightarrow \varphi$ satisfiable
- Consequence: all problems in NP have local verification procedures
- Do we even need the whole proof?
- Proof required to guarantee consistency of assignment

Multiplayer games: the power of two Merlins

- Arthur ("referee") asks questions
- Two isolated Merlins ("players")
- Arthur checks answers.
- Value $\omega(G)=\sup _{\text {Merlins }} \operatorname{Pr[Arthur~accepts]~}$
- Ex: 3-SAT game $G=G_{\varphi}$

$$
\exists x, \varphi(x)=C_{1}(x) \wedge C_{2}(x) \wedge \cdots \wedge C_{m}(x)=1 ?
$$

- Consequence: All languages in NP have truly local verification procedure
- PCP Theorem: poly-time $G_{\varphi} \rightarrow \widetilde{G_{\varphi}}$ such that $\omega\left(G_{\varphi}\right)=1 \Rightarrow \omega\left(\widetilde{G_{\varphi}}\right)=1$

$$
\omega\left(G_{\varphi}\right)<1 \Rightarrow \omega\left(\widetilde{G_{\varphi}}\right) \leq 0.9
$$

Local verification of quantum proofs

- QMA $=\{$ decision problems "does x have property P "
that have quantum polynomial-time verifiable quantum proofs $\}$
- Ex: quantum circuit-sat, unitary non-identity check
- Consistency of local density matrices, N-representability
- [Kitaev'99,Kempe-Regev’03] 3-local Hamiltonian is complete for QMA

$$
H=\sum_{i} H_{i}, \text { each } H_{i} \text { acts on } 3 \text { out of } n \text { qubits. Decide: }
$$

$$
\begin{aligned}
& \exists|\Gamma\rangle,\langle\Gamma| H|\Gamma\rangle \leq a=2^{-p(n)}, \text { or } \\
& \forall|\Phi\rangle,\langle\Phi| H|\Phi\rangle \geq b=1 / q(n) ?
\end{aligned}
$$

- Still need Merlin to provide complete state
- Today: is "truly local" verification of QMA problems possible?

Outline

1. Local verification of classical \& quantum proofs
2. Quantum multiplayer games
3. Result: a game for the local Hamiltonian problem
4. Consequences:
a) The quantum PCP conjecture
b) Quantum interactive proof systems

Quantum multiplayer games

- Quantum Arthur exchanges quantum messages with quantum Merlins
- Value $\omega^{*}(G)=\sup _{\text {Merlins }} \operatorname{Pr}[$ Arthur accepts $]$

Measure $\Pi=\left\{\Pi^{a c c}, \Pi^{r e j}\right\}$

- Quantum messages \rightarrow more power to Arthur
- Entanglement $\quad \rightarrow$ more power to Merlins...
- Can Arthur use entangled Merlins to his advantage?

The power of entangled Merlins (1)
The clause-vs-variable game

- No entanglement:

$$
\omega\left(G_{\varphi}\right)=1 \Leftrightarrow \varphi \text { SAT }
$$

- Magic Square game: \exists 3-SAT φ, φ UNSAT but $\omega^{*}\left(G_{\varphi}\right)=1$!
- Not a surprise: $\omega^{*}(G) \gg \omega(G)$

$$
\exists x, \varphi(x)=C_{1}(x) \wedge C_{2}(x) \wedge \cdots \wedge C_{m}(x)=1 ?
$$ is nothing else than Bell inequality violation

- [KKMTV’08,IKM'09] More complicated $\varphi \rightarrow \widetilde{G_{\varphi}}$ s.t. φ SAT $\Leftrightarrow \omega^{*}\left(\widetilde{G_{\varphi}}\right)=1$ \rightarrow Arthur can still use entangled Merlins to decide problems in NP
- Can Arthur use entangled Merlins to decide QMA problems?

The power of entangled Merlins (2)
A Hamiltonian-vs-qubit game?

- Given H, can we design $G=G_{H}$ s.t.:

$$
\begin{aligned}
& \exists|\Gamma\rangle,\langle\Gamma| H|\Gamma\rangle \leq a \quad \Rightarrow \omega^{*}(G) \approx 1 \\
& \forall|\Phi\rangle,\langle\Phi| H|\Phi\rangle \geq b \Rightarrow \omega^{*}(G) \ll 1
\end{aligned}
$$

- Some immediate difficulties:
- Cannot check for equality of reduced densities

- Local consistency \# global consistency (deciding whether this holds is itself a QMA-complete problem)
- [KobMat03] Need to use entanglement to go beyond NP
- Idea: split proof qubits between Merlins

The power of entangled Merlins (2) A Hamiltonian-vs-qubit game?

- [AGIK'09] Assume H is 1D

- Merlin ${ }_{1}$ takes even qubits, Merlin $_{2}$ takes odd qubits

- $\omega^{*}\left(G_{H}\right)=1 \Rightarrow \exists|\Gamma\rangle,\langle\Gamma| H|\Gamma\rangle \approx 0$?
- Bad example: the EPR Hamiltonian $H_{i}=|E P R\rangle\left\langle\left. E P R\right|_{i, i+1}\right.$ for all i

- Highly frustrated, but $\omega^{*}\left(G_{H}\right)=1$!

The difficulty

?

The difficulty

?
Can we check existence of global state $|\Gamma\rangle$ from "local snapshots" only?

Outline

1. Checking proofs locally
2. Entanglement in quantum multiplayer games
3. Result: a quantum multiplayer game for the local Hamiltonian problem
4. Consequences:
5. The quantum PCP conjecture
6. Quantum interactive proof systems

Result: a five-player game for LH

Given 3-local H on n qubits, design 5 -player $G=G_{H}$ such that:

- $\exists|\Gamma\rangle,\langle\Gamma| H|\Gamma\rangle \leq a \quad \Rightarrow \omega^{*}(G) \geq 1-a / 2$
- $\forall|\Phi\rangle,\langle\Phi| H|\Phi\rangle \geq b \Rightarrow \omega^{*}(G) \leq 1-b / n^{c}$

- Consequence: the value $\omega^{*}(G)$ for G with n classical questions, 3 answer qubits, 5 players, is $Q M A$-hard to compute to within $\pm 1 / \operatorname{poly}(n)$
- Consequence: $Q M I P \subsetneq Q M I P^{*}\left(1-2^{-p}, 1-2 \cdot 2^{-p}\right)$ (unless $N E X P=Q M A_{E X P}$)

The game $G=G_{H}$

- ECC E corrects ≥ 1 error (ex: 5-qubit Steane code)
- Arthur runs two tests (prob $1 / 2$ each):

1. Select random H_{ℓ} on q_{i}, q_{j}, q_{k}
a) Ask each Merlin for its share of q_{i}, q_{j}, q_{k}
b) Decode E
c) Measure H_{ℓ}

2. Select random H_{ℓ} on q_{i}, q_{j}, q_{k}
a) Ask one (random) Merlin for its share of q_{i}, q_{j}, q_{k}. Select $s \in\{i, j, k\}$ at random; ask remaining Merlins for their share of q_{s}
b) Verify that all shares of q_{s} lie in codespace

- Completeness: $\exists|\Gamma\rangle,\langle\Gamma| H|\Gamma\rangle \leq a \Rightarrow \omega^{*}(G) \geq 1-a / 2$

Soundness: cheating Merlins (1)

- Example: EPR Hamiltonian

- Cheating Merlins share single EPR pair
- On question $H_{\ell}=\left\{q_{\ell}, q_{\ell+1}\right\}$, all Merlins sends back both shares of EPR
- On question q_{i}, all Merlins send back their share of first half of EPR
- All Merlins asked $H_{\ell} \rightarrow$ Arthur decodes correctly and verifies low energy
- One Merlin asked $H_{i}=\left\{q_{i}, q_{i+1}\right\}$ or $H_{i-1}=\left\{q_{i-1}, q_{i}\right\}$, others asked q_{i}
- If H_{i}, Arthur checks his first half with other Merlin's \rightarrow accept
- If H_{i+1}, Arthur checks his second half with otherMerlin's \rightarrow reject
- Answers from 4 Merlins + code property commit remaining Merlin's qubit

Soundness: cheating Merlins (2)

- Goal: show $\forall|\Phi\rangle,\langle\Phi| H|\Phi\rangle \geq b \Rightarrow \omega^{*}(G) \leq 1-b / n^{c}$
- Contrapositive: $\omega^{*}(G)>1-b / n^{c} \Rightarrow \exists|\Gamma\rangle,\langle\Gamma| H|\Gamma\rangle<b$
\rightarrow extract low-energy witness from successful Merlin's strategies
- Given:
- 5-prover entangled state $|\psi\rangle$
- For each i, unitary U_{i} extracts Merlin's answer qubit to q_{i}
- For each term H_{ℓ} on q_{i}, q_{j}, q_{k},
 unitary V_{ℓ} extracts $\left\{q_{i}, q_{j}, q_{k}\right\}$
- Unitaries local to each Merlin, but no a priori notion of qubit
- Need to simultaneously extract $q_{1}, q_{2}, q_{3}, \ldots$

Soundness: cheating Merlins (3)

We give circuit generating low-energy witness $|\Gamma\rangle$ from successful Merlin's strategies

Outline

1. Checking proofs locally
2. Entanglement in quantum multiplayer games
3. Result: a quantum multiplayer game for the local Hamiltonian problem
4. Consequences:
5. The quantum PCP conjecture
6. Quantum interactive proof systems

Perspective: the quantum PCP conjecture

PCP theorem (1):

constant-factor approximations
to $\omega(G)$ are NP-hard
 game

PCP theorem (2): Given 3-SAT φ, it is NP-hard to decide between 100%-SAT vs $\leq 99 \%-$ SAT

Kitaev's QMA-completeness result for LH is a first step towards:
[AALV'10] Quantum PCP conjecture: There exists constants $\alpha<\beta$ such that given local $H=H_{1}+\cdots+H_{m}$, it is QMA-hard to decide between:

- $\exists|\Gamma\rangle, \quad\langle\Gamma| H|\Gamma\rangle \leq a=\alpha m$, or
- $\forall|\Phi\rangle,\langle\Phi| H|\Phi\rangle \geq b=\beta m$

Our results are a first step towards:

Quantum PCP conjecture*: constant-factor approximations to $\omega^{*}(G)$ are QMA-hard

Consequences for interactive proof systems

$L \in \operatorname{MIP}(c, s)$ if $\exists x \rightarrow G_{x}$ such that

- $x \in L \Rightarrow \omega\left(G_{x}\right) \geq c$
- $x \notin L \Rightarrow \omega\left(G_{x}\right) \leq s$
- Cook-Levin:
$N E X P=M I P\left(1,1-2^{-p}\right)$
- PCP:
$N E X P=M I P(1,1 / 2)$
$L \in \operatorname{QMIP}^{*}(c, s)$ if $\exists x \rightarrow G_{x}$ such that
- $x \in L \Rightarrow \omega^{*}\left(G_{x}\right) \geq c$
- $x \notin L \Rightarrow \omega^{*}\left(G_{x}\right) \leq s$
- [KKMTV'08,IKM'09]

$$
N E X P \subseteq(Q) M I P^{*}\left(1,1-2^{-p}\right)
$$

- [IV'13]
$N E X P \subseteq(Q) M I P^{*}(1,1 / 2)$
- Our result: $Q M A_{E X P} \subseteq Q M I P^{*}\left(1-2^{-p}, 1-2 \cdot 2^{-p}\right)$
- Consequence: $Q M I P \neq Q M I P^{*}\left(1-2^{-p}, 1-2 \cdot 2^{-p}\right)$

$$
\text { (unless } \left.N E X P=Q M A_{E X P}\right)
$$

Summary

- Design "truly local" verification pocedure for LH
- Entangled Merlins strictly more powerful than unentangled
- Proof uses ECC to recover global witness from local snapshots

Questions

- Design a game with classical answers for LH? [RUV'13] requires poly rounds
- Prove Quantum PCP Conjecture*
- What is the relationship between QPCP and QPCP*?
- Are there quantum games for languages beyond QMA?

Thank you!

