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Introduction

• Goal: transform only partly random classical distribution P over 
an alphabet N into (almost perfectly) uniformly random 
distribution over a shorter alphabet M

to (Classical) Randomness Extractors

N Ext M

• Only Conditions on the input source: contains some randomness, 
as measured by the min-entropy Hmin(N)P = -log maxx∈N P(x)



Introduction
to (Classical) Randomness Extractors

• Cannot be achieved in a deterministic way, if we require it to work 
for all sources satisfying a lower bound on their min-entropy

• Can be achieved if the use of a catalyst is allowed: additional 
uniformly random source over an alphabet D (called the seed) 

N Ext M



Introduction
to (Classical) Randomness Extractors

Definition:

A (k,𝜀) Extractor is a deterministic mapping Ext: D x N -> M such that 
for all probability distributions P on N such that Hmin(N)P ≥ k we have 
that (UD,Ext(P,UD)) is 𝜀-close in variational distance to (UD,UM).
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where we defined the output distribution by
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Introduction

Let { fs | fs : N -> M } be set of two-universal hash functions,  
then Ext(s,x) = fs(x) is a (k,𝜀) extractor for |M| = 𝜀 2k

to (Classical) Randomness Extractors

Example (left-over hash lemma): 



Introduction
to (Classical) Randomness Extractors

• Extractors are used in many constructions in theoretical CS, but 
as the example suggest, they are useful in cryptography, too.

• They map partially secure sources initially correlated to a classical  
adversary Adv to an almost uniform and secure distributions

NAdv Ext M Adv

Let { fs | fs : N -> M } be set of two-universal hash functions,  
then Ext(s,x) = fs(x) is a (k,𝜀) extractor for |M| = 𝜀 2k

Example (left-over hash lemma): 



Introduction
to (Classical) Randomness Extractors

• Extractors are used in many constructions in theoretical CS, but 
as the example suggest, they are useful in cryptography, too.

• They map partially secure sources initially correlated to a classical  
adversary Adv to an almost uniform and secure distributions

NQ Ext M Q

Let { fs | fs : N -> M } be set of two-universal hash functions,  
then Ext(s,x) = fs(x) is a (k,𝜀) extractor for |M| = 𝜀 2k

Example (left-over hash lemma): 



Introduction
to Quantum-proof Randomness Extractors

Input condition for classical-quantum-states: 

• measures the knowledge of an adversary having access to a 
quantum system Q correlated with the source on N

• conditional min-entropy via maximisation over all guessing strategies
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Introduction
to Quantum-proof Randomness Extractors

Definition:
A (k,𝜀) quantum-proof Extractor is a deterministic mapping  
Ext: D x N -> M such that for all cq-states 𝝆NQ  with conditional min-
entropy lower bounded by k, the output state is almost perfectly secure.
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Introduction
to Quantum-proof Randomness Extractors

• Central question: what happens if the adversary is quantum? 
Does the Extractor still work?

• Motivation: quantum cryptography, examination of the power of 
quantum memory

C(Ext,k) Q(Ext,k)
?

classical adversary quantum adversary



Introduction
to Quantum-proof Randomness Extractors

What did we know so far:

• One-bit output size: always stable [Koenig and Terhal]

• Quantum-proof constructions: a handful of constructions 
are known to be quantum-proof [Renner and collaborators]: 
two-universal hashing, Trevisan’s construction

• Not generic: there exists a construction which is known to 
be unstable [Gavinsky et al.], but it has rather bad parameters



Results

• We developed a mathematical framework to study this question, 
based on operator space theory

• Using the framework, we can find SDP’s SDP(Ext,k) such that

• These SDP relaxations characterise many known examples of 
quantum-proof extractors, and give new bounds 

overview

C(Ext,k) ≤ Q(Ext,k) ≤ SDP(Ext,k)



Results

• We show that small output Extractors and high input entropy 
Extractors are quantum-proof:

overview

SDP(Ext,k+log(2/𝜀)) ≤ O(√|M|𝜀))

SDP(Ext,k+1) ≤ O(2-k|N|𝜀)

• for every deterministic mapping F: D x N -> M, there exists a 
two-partite game G(F) such that its classical value ω(G) 
characterises the Condenser property while the quantum value 
ωq(G) characterises whether the Condenser is quantum-proof 
(Condenser=generalisation of an Extractor, increases the min-
entropy rate)



Results
overview

• for every deterministic mapping F: D x N -> M, there exists a 
two-partite game G(F) such that its classical value ω(G) 
characterises the Condenser property while the quantum value 
ωq(G) characterises whether the Condenser is quantum-proof

C(F) Q(F)



Results
overview

• for every deterministic mapping Ext: D x N -> M, there exists a 
two-partite game G(Ext,k) such that its classical value ω(G) 
characterises the Extractor property while the quantum value 
ωq(G) characterises whether the Extractor is quantum-proof

ω(G) ωq(G)



Mathematical Framework

• The property of being a quantum-proof Extractor can be 
formulated in terms of a completely bounded norm 
(norms between operator spaces)

• Classical Extractor property is expressed as norm of a linear 
mapping between normed linear spaces

• These normed spaces can be ‘quantized’, giving rise to  
operator spaces

Overview



Mathematical Framework

• Consider the norm kxk\ = max{kxk1, 2kkxk1}

• P distribution with min-entropy lower bounded by k: kPk\  1

• Extractor: characterised by the linear mapping 

and the fact
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Linear normed spaces

C(Ext,k) =



Mathematical Framework

• Linear normed space E together with a sequence of norms on 

satisfying some consistency conditions

classical
quantum

• A mapping L : E -> F between two operator spaces E, F is 
completely bounded (cb) with norm c if

kLkcb = sup
q2N

�
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Operator spaces



Mathematical Framework

• An Extractor is quantum-proof if the associated mapping is 
completely bounded

• Carrying out the construction for the 1-norm on the classical part 
leads to an operator space whose dual space characterises the 
conditional min-entropy, and the cap norm in addition corresponds 
to the normalisation constraint

quantum-proof Extractors

k�[Ext]kcb,\!1  "

Q(Ext,k) = 



Mathematical Framework

• An Extractor is quantum-proof if the associated mapping is 
completely bounded

quantum-proof Extractors

k�[Ext]kcb,\!1  "

Q(Ext,k) = 

C(Ext,k) Q(Ext,k)



Mathematical Framework

• An Extractor is quantum-proof if the associated mapping is 
completely bounded

quantum-proof Extractors

k�[Ext]kcb,\!1  "

Q(Ext,k) = 

k�[Ext]kcb,\!1k�[Ext]k\!1



Mathematical Framework
quantum-proof Extractors

k�[Ext]kcb,\!1  "

Q(Ext,k) = 

• Relaxing this completely bounded norm gives rise to a 
hierarchy of SDP relaxations, and the first level characterises 
most known quantum-proof constructions

≤ SDP(Ext,k)k�[Ext]kcb,\!1



Outlook & Open questions

• Higher levels of SDP hierarchies have to be examined; interesting 
candidate example: random functions

• Through the connection to two-partite games, can any tools from 
there applied to Extractors?

• We described a useful framework to study quantum-proof 
Randomness Extractors based on operator space theory

• Are our upper bounds on the gap between classical and quantum-
proof Extractors tight?



Thank you for your attention
Any questions?


