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Abstract. Randomness extractors are an important building block for classical and quantum cryp-
tography as well as for device independent randomness amplification and expansion. It is known that
some constructions are quantum-proof whereas others are provably not [Gavinsky et al., STOC’07].
We argue that the theory of operator spaces offers a natural framework for studying to what extent
objects are quantum-proof: we first rephrase the definition of extractors as a bounded norm condition
between normed spaces, and then show that the presence of quantum adversaries corresponds to a
completely bounded norm condition between operator spaces. Using semidefinite programming (SDP)
relaxations of this completely bounded norm, we recover all known classes of quantum-proof extrac-
tors as well as derive new ones. Furthermore, we provide a characterization of randomness condensers
(which correspond to a generalization of extractors) and their quantum-proof properties in terms of
two-player games.

Full Technical Version: arXiv:1409.3563.

Introduction. In cryptographic protocols such as key distribution and randomness expansion, it is
often possible to guarantee that an adversary’s knowledge about the secret N held by honest players
is bounded. The relevant quantity in many settings is the adversary’s guessing probability of the
secret N given all his knowledge. However, the objective is usually not to create a secret that is
only partly private but rather to create a (possibly smaller) secret that is almost perfectly private.
The process of transforming a partly private string N into one that is almost uniformly random M
from the adversary’s point of view is called privacy amplification [2, 1]. In order to perform privacy
amplification, we apply to N a function chosen at random from a set of functions {fs} that has the
property of being a randomness extractor.

Randomness extractors are by now a standard tool used in many classical and quantum protocols.
They are for example an essential ingredient in quantum key distribution and device independent
randomness expansion protocols [18, 20]. For such applications, it has been realized [18] that it is
crucial to explicitly consider quantum adversaries. It is by no means obvious that a quantum adversary
also satisfying the guessing probability constraint on N would not be able to have additional knowledge
about the output M .

We refer to extractors that work even in the presence of quantum adversaries as quantum-proof
extractors. In general, quantum-proof extractors are poorly understood: we only know that some
standard constructions [13, 14, 8] of extractors are quantum-proof and there is one example of an
extractor (with quite bad parameters) that is not quantum-proof [9]. It is for example still consistent
with our knowledge that all valid extractors are quantum-proof with only a mild (polynomial in the
number of output bits) penalty on the error [19, Slide 84]. But it is also possible that there are
extractors for which quantum adversaries lead to an exponentially better attack.

We believe that in the same way as communication complexity and multi prover games (Bell in-
equalities), the setting of randomness extractors provides a beautiful framework for studying the power
and limitations of a quantum memory compared to a classical one. For example, in communication
complexity one compares the power of quantum states on c qubits versus that of states on c bit for
computing a function with distributed inputs. For randomness extractors, we compare the power
of quantum-classical states ρQN satisfying pguess(N |Q) ≤ p versus that of classical states satisfying
pguess(N |C) ≤ p in the task of distinguishing the output of a function from the uniform distribution.

In this submission, we argue that the theory of operator spaces, sometimes also called “quantized
functional analysis”, provides a natural arena for studying this question. Within this framework, we
prove new stability statements, i.e. sufficient conditions for extractors to be quantum-proof. Our
methods also allow us to recover all previously known results on quantum-proof extractors in a unified
way: a natural semidefinite programming (SDP) relaxation of our characterization of quantum-proof
extractors subsumes all the known methods. We mention that operator space theory has already
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been successfully applied in the context of understanding Bell inequality violations; see [12, 11] and
references therein. In fact, we even make this connection explicit by constructing for each condenser
a two-player game whose ratio of the classical vs. the entangled value characterizes the stability
properties of the condenser.

Extractors. As already mentioned, randomness extractors map a weakly random system into (al-
most) uniform random bits, with the help of perfectly random bits called the seed. We use N = 2n

to denote the input system, M = 2m to denote the output system, and D = 2d to denote the seed
system. A (k, ε)-extractor is then a family of functions {F1, . . . , FD} with Fs : N →M satisfying the
following property. For any distribution PN with Hmin(N)P := − log pguess(N)P ≥ k (here pguess(N)
denotes the maximal probability of guessing N), we have

1

D

D∑
s=1

∥∥Fs(PN )− υM
∥∥
`1
≤ ε ,(1)

where υM denotes the uniform distribution on M . This definition refers to strong extractors, which
correspond to what is needed for many cryptographic applications.

For applications in classical and quantum cryptography (see, e.g., [18, 15]) and for constructing
device independent randomness amplification and expansion schemes (see, e.g., [6, 17, 5, 7, 20]) we are
interested if extractor constructions also work when the input source is correlated to another (possibly
quantum) system Q. That is, we would like that for all quantum-classical input density matrices ρQN
with conditional min-entropy Hmin(N |Q)ρ := − log pguess(N |Q)ρ ≥ k (here pguess(N |Q) denotes the
maximal probability of guessing N given Q), we have

1

D

D∑
s=1

∥∥idQ ⊗ Fs)(ρQN )− ρQ ⊗ υM
∥∥
1
≤ ε.(2)

If we restrict the system Q to be classical, it is simple to see by conditioning on the possible values
of Q that this basically reduces to usual extractor condition (1) [14]. However, if Q is quantum, the
condition (2) could be much stronger than condition (1). Extractors that satisfy the stronger condition
(2) are called quantum-proof.

Norms, completely bounded norms and SDP’s. For vectors in RN , the `1-norm is the sum of
all absolute values of vector entries and the `∞-norm is the largest absolute value of vector entries.
Both norms are useful for studying extractors, as the first norm encodes the normalization constraint
(the inputs are probability distributions), while the second is just the exponential of the min-entropy.
Linear maps between normed spaces are naturally equipped with norms, defined as the maximum
norm of any output, given that the input has norm bounded by 1. Of course, the norms on the
input and the output spaces can be different. Rewriting (1) as a condition on norms, we express the
extractor condition as a condition on the norm of a linear map ∆[{Fs}] : RN → RMD. We refer to
the full version [3] for more details on this.

In order to take into account quantum adversaries in terms of norms, we want to allow for corre-
lations between the input and an arbitrary quantum system Q. The framework of operator spaces
axiomatizes such scenarios: an operator space is a normed space equipped with a sequence of norms
describing possible correlations to quantum systems. If we now study linear maps between normed
spaces, we can naturally consider these maps to be maps between operator spaces by letting them act
trivially on the quantum part. Of course, the norm of the linear maps might change, since we now
also allow for correlations to the quantum part (at the input as well as at the output). The asso-
ciated norm, defined as the supremum with respect to quantum systems of any dimension, is called
the completely bounded norm, or just cb-norm. For the setting of extractors, we construct natural
operator space structures such that the completely bounded norm of the linear map ∆[{Fs}] captures
the property of being quantum-proof.

Theorem. The property of being quantum-proof can be formulated as a condition on a completely
bounded norm defined with respect to a suitably chosen operator space.

We derive multiple applications from this finding that are summarized in Table 1. First, we are
able to show using Grothendieck’s inequality that when the min-entropy k is very close to n, all
extractors are approximately quantum-proof. Interestingly, our bound quite tightly matches the known
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Strong (k, ε)-extractor Quantum-proof with parameters SDP relaxation

Random functions ? x

One-bit output X [14, Thm. 1] (k + log(1/ε), c
√
ε) X

Small output X (k + log(2/ε), c
√

2m ε) X

High entropy X (k + 1, c2n−kε) X

Spectral (e.g., two-universal hashing) X [4, Thm. 4] (k, c
√
ε) X

Trevisan based X [8, Thm. 4.6] (k + log(1/ε), c
√
ε) X

Table 1. Stability results for strong extractors: input N = 2n, output M = 2m, seed
D = 2d, min-entropy k, error parameter ε, and c represent possibly different constants.
Exact statements can be found in [3]. Note that the SDP relaxation recovers all known
cases. References point to where the corresponding properties were shown first.

separation [9] between conditions (1) and (2). As a second application, we show that any extractor
with small enough output (say constant or logarithmic in n) is approximately quantum-proof. This
last statement is a generalization of a result [14] that shows that extractors with a single bit of output
are quantum-proof. We emphasize that these results do not make any use of the structure of the
functions Fs and thus hold for any valid extractor construction.

In order to understand our completely bounded norm condition, we study a SDP relaxation of this
condition and find that all known stability results (including the new ones that we derive) are actually
bounds on this SDP relaxation. In other words, the only known method for proving security against
quantum adversaries is via this SDP. Quite surprisingly, we find that for a small set of randomly chosen
function the value of this SDP is large with very high probability. This contrasts with the fact that
such families of functions are the prototypical example of randomness extractors and define with high
probability extractors with optimal parameters (satisfying condition (1)). This can be interpreted
in two ways: either random functions are good candidates for a large separation between conditions
(1) and (2), or that understanding how random functions behave in the presence of quantum side
information requires completely new methods.

Theorem. The completely bounded norm characterizing quantum-proof extractors can be upper
bounded by an SDP. For all known quantum-proof extractors, the SDP relaxation is approximately
tight.

Condensers, Graphs and Games. Randomness condensers are obtained by weakening the con-
dition on the output: it does not need to be close to the uniform distribution but only close to
some distribution with min-entropy k′. When k′ = m, this is exactly the condition for being a
(k, ε)-extractor. The reason such objects are called condensers is that typically we want k′ ≈ k but
m � n so that the entropy is condensed to a smaller space. As for extractors, one naturally defines
quantum-proof condensers to be secure even in the presence of quantum adversaries.

The framework of normed spaces and operator spaces also allows to analyze to what extent con-
densers are quantum-proof. The input constraint is the same as in the extractor case, but slightly
more work is needed to capture the output constraint. We refer to the full version [3] for a further
technical discussion.

Using our characterization in terms of norms, we can show that evaluating the performance of a
condenser corresponds to an instance of a well studied combinatorial problem, called bipartite densest
subgraph [16]. The connection to graph theory also provides the first step towards our last result.
Using techniques of Junge from [10] we can define a two-player game that exactly captures the property
of being a (quantum-proof) condenser.

Theorem. To any condenser, we can associate a two-player game such that the classical (resp. en-
tangled) value characterizes the error in the classical (resp. quantum) case.

In summary, we present a unifying approach to study the stability properties of pseudo-random
objects against quantum adversaries, recovering all known results and providing new ones.



4 MARIO BERTA, OMAR FAWZI, AND VOLKHER B. SCHOLZ

References
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