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A basic problem in quantum information theory is to determine the ability of a noisy channel
to convey quantum information at a given standard of fidelity. The quantum capacity measures
the optimal asymptotic rate of transmission (in qubits per channel use) possible for arbitrarily
good fidelities (if not perfect fidelity). The LSD (Lloyd [5], Shor [12], Devetak [3]) Theorem shows
that the quantum capacity is equal to the regularised coherent information, an optimization that
involves unlimited number of copies of the channel. Our understanding of the quantum capacity
remains limited – given a simple memoryless channel (such as the qubit depolarizing channel for
certain error parameter), determining whether it has a positive quantum capacity is not known to
be decidable. To gain insights into the often intractable problem of determining quantum capacities
of channels, “assisted capacities” have been studied (see e.g. [1]), where the sender and the receiver
are given extra free resources, such as entanglement or classical communication.

In this paper we are interested in the non-asymptotic (or finite blocklength) regime focusing
on the trade-off between the dimension of the quantum system to be sent, the number of channel
uses made, and the fidelity achieved. In the absence of feedback in the coding protocol, this is
also called the ‘one-shot’ regime since we can treat multiple channel uses as a single use of a
larger channel. In the one-shot regime, we can remove assumptions such as memoryless channel
uses, address questions concerning quantum error correcting codes, and understand how fast the
achievable rate converges to the capacity as the number of uses increases. Sometimes, one-shot
studies provide results concerning asymptotic capacities. However, the exact trade-off of interest
is generally intractable. In the classical case, powerful bounds are known [9]. Parallel to the study
of assisted capacities, one can consider assisted codes in the finite blocklength regime.

Mosonyi and Datta [8], Wang and Renner [14] and Renes and Renner [11] have given one-shot
converse and achievability bounds for classical data transmission by unassisted codes over classical-
quantum channels. In [2] Datta and Hsieh derive converse and achievability results for classical
and quantum data transmission by entanglement-assisted codes over general quantum channels in
terms of smoothed min- and max-entropies. A drawback of the bounds given in [2] is that no
explicit method of computation is given, and it is not clear that an efficient method exists. A
one-shot converse bound for entanglement-assisted codes amenable to computation was given in
Matthews and Wehner [7] by generalising the hypothesis-testing based ‘meta-converse’ of [9] to
quantum channels. In particular, the bound is a semidefinite program (SDP).

An alternative approach to upper bound one-shot performance is to optimize data transmission
over a larger class of coding procedures which is mathematically easier to describe. This approach
is applied to entanglement distillation in an early paper by Rains [10], which gives one-shot converse
bounds for entanglement distillation by local operations and classical communication in the form
of an SDP for the performance of the more powerful class of PPT-preserving operations, along
with many other insightful results. This was also the approach used in [6], which derives a linear
program for the performance of transmitting classical data via classical channels by codes which
are non-signalling when the encoder and decoder are considered as a single bipartite operation.
The linear program was shown to be equivalent to the meta-converse of [9].

Our work follows this approach. Noting that any forward-assisted code corresponds to a bipartite
operations which is non-signalling from Bob to Alice, we consider quantum data transmission via
quantum channels using codes whose bipartite operation is also non-signalling (from Alice to Bob),
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PPT-preserving or both. We derive one-shot correspondences that allow our results to be viewed
as extensions to results in [7] and [10]. Our main technical contribution is a simple semidefinite
programs (SDPs) for the optimal channel fidelity of codes which are non-signalling, PPT-preserving,
or both. These provide upper bounds on the fidelity of operationally defined classes of codes via
the inclusions shown in Figure 1.

Theorem 1. Let NA′B be the Choi operator for the channel operation NB←A′. There is a forward-
assisted code of size K, average channel input ρA′ and channel fidelity fc for NB←A′ which is PPT
preserving and/or non-signalling from Alice to Bob if and only if there exists an operator ΛA′B such
that

fc = TrNT
A′BΛA′B, ΛA′B ≤ ρA′1B, ΛA′B ≥ 0 (1)

NS :ΛB = 1B/K
2 (2)

PPTp :

{
tB←B[ΛA′B] ≥ −ρA′1B/K,

tB←B[ΛA′B] ≤ ρA′1B/K.
(3)

Optimising fc subject to the constraints on line (1) and one or both of constraints (2) and (3), is
an SDP. We also give the dual SDPs, for which any feasible point provides an upper bound on the fi-
delity.

Forward-assisted codes
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Figure 1: The relationship between various sub-
classes of forward-assisted codes: PPT-preserving
codes PPTp; forward-Horodecki-assisted codes FHA;
forward-classical-assisted codes FCA; unassisted
codes UA; entanglement-assisted codes EA; non-
signalling codes NS;

We compare our SDP for the optimal chan-
nel fidelity for non-signalling codes with an
earlier upper bound for entanglement-assisted
codes (derived with different techniques in [7]
for the success probability of classical data
transmission). Surprisingly, our new bound,
which applies to a larger class of codes, is at
least as tight as the old bound. Furthermore,
from the asymptotic analysis of the earlier
bound [7], we obtain a new asymptotic result
for memoryless noisy channels: that the more
powerful class of non-signalling codes yield the
same capacity as entanglement-assisted codes.

We also study the optimal channel fidelity
for codes which are only PPT-preserving, deriv-
ing connections between PPT-preserving codes
and PPT-preserving entanglement distillation
scheme studied by Rains in [10]. We show that
Rains’ SDP for the fidelity of PPT-preserving
entanglement distillation provides lower bounds on the fidelity of the PPT-preserving codes. We
also show that for certain special channels Rains’ SDP coincides with our SDP for the fidelity of
PPT-preserving codes.

Applying our SDPs to a concrete example, we compute the fidelity for codes that are PPT-
preserving, non-signalling or both, over the Werner-Holevo channels for blocklengths up to 120.
The results demonstrate that codes which satisfy both constraints can be strictly less powerful
than codes that satisfy either one of the constraints. Thus combining the PPT-preserving and
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Figure 2: The logarithm (base-two) of the
optimal channel fidelity for non-signalling,
PPT-preserving codes of size Kn = b2rnc
for n uses of the three-dimensional Werner-
Holevo channel at rates r = log(5/2− 1/20)
(circles) and r = log(5/2− 1/40) (squares).
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Figure 3: The optimal channel fidelity for
sending the state of a K-dimensional sys-
tem over two-uses of the three-dimensional
Werner-Holevo channel using a code which
is (i) non-signalling (yellow diamonds), (ii)
PPT-preserving (red squares) (iii) both non-
signalling and PPT-preserving (blue circles).

non-signalling constraints provides strictly stronger upper bounds for unassisted communication,
at least for finite block-lengths. The results suggest that this improvement may even persist in the
asymptotic regime.

For d ≥ 3, the d-dimensional Werner-Holevo channel is anti-degradable and therefore has no
quantum capacity. Furthermore, the results of Duan, Severini and Winter [4] imply that it has
no entanglement-assisted zero-error classical capacity. Despite this, our results and Rains’ [10]
imply that PPT-preserving codes enable zero-error quantum communication over the channel at
rate log(d+2)/d. Surprisingly, even codes which are both non-signalling and PPT-preserving allow
perfect transmission of one qubit over two uses of three-dimensional Werner-Holevo channel (see
Figure 3). We discuss the relationship of this phenomenon to the superactivation of quantum
capacity [13]. Our result could be considered a form of superactivation, since neither the channel
nor the code involved has quantum capacity, yet their combination can communicate quantum data
perfectly. However, we do not know whether the code can be implemented by local operations and
forward communication over a channel with no quantum capacity. If it could be, then our result
would demonstrate a very strong version of superactivation in the sense of [13], where two channels
with no quantum capacity could be used together to transmit quantum information perfectly.

Since any operation which is non-signalling from Bob to Alice can be implemented by forward
communication from Alice to Bob, it might be tempting to conjecture that any PPT-preserving
operation which is non-signalling from Bob to Alice can be implemented by communication over a
PPT-binding channel from Alice to Bob. We show, via an example, this is not the case, but the
possibility of the strong form of superactivation remains open.
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