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Inferring causal relationships from empirical data is one of the main goals of science. To that
aim a simple but crucial observation is that the correlations that can be observed between a set of
variables depend on the causal structure underpinning them. Within that context, during the past year
we have developed and formalized a new research program for the study of causal relations between
classical as well as quantum variables. What we propose is an information-theoretic framework for
computing constraints that a causal structure can give rise to. We illustrate the power and generality
of our method by applying it to a variety of classical and quantum scenarios: i) inferring the direction
of causation from marginal observations, ii) the quantification of direct causal influence in classical
models, iii) the derivation of constraints implied by the topology of distributed quantum architectures
and iv) a strengthened version of the information causality principle.

The root of this research program lies in previous work on Bell’s theorem [1–4], that we have
adapted and generalized for its use in classical causal inference problems [5] and that in our most
recent work [6] has been tailored to deal with quantum causal inference problems as well. The
undergoing evolution of this program highlights a fruitful interplay between the causal inference
literature and problems in quantum information, in particular nonlocality, a connection which is
increasingly appreciated among quantum physicists.

It is an oft-repeated piece of advice that “correlation does not imply causation”. In spite of this cautious
remark, the emerging field of causal inference aims exactly that: to identify cause-effect relationships given
some observed correlations. The fact that empirical data can contain information about causation rather than
mere correlation had been the subject of a fiercely debate until the seminal works of Pearl [7]. Since then
it has become popular to use directed acyclic graphs (DAGs) to represent causal structures, with random
variables as nodes and arrows meaning direct causal influence [7, 8]. Such a causal model offers a means
of explaining dependencies between classical variables, by specifying the process that gave rise to them.
More formally, variables X1, . . . , Xn form a Bayesian network with respect to a DAG, if every variable Xi

depends only on its graph-theoretic parents pai. This is the case [7, 8] if and only if the distribution factorizes
as in

p(x1, . . . , xn) =

n∏
i=1

p(xi|xPAi). (1)

One can then ask the following fundamental question: Given a subset of classical variables, which cor-
relations between them are compatible with a given causal structure? Arguably, this problem have wide
applications in the classical treatment of causal models, such as statistics and machine learning, and via these,
in genetics, economics and other disciplines wherein causal discovery plays a prominent role.

Aside its fundamental role in classical causal inference, this problem also appears in many related quantum
mechanical problems. To illustrate, we highlight that the reasoning employed above is close to a core question
in the foundations of quantum mechanics: what is the set of quantum mechanical correlations compatible
with a presumed causal structure? Since Bell’s theorem [9], we know that our classical conceptions of causal
relations must be taken with care, as they fail, for example, to commit with the results obtained in some
quantum experiments, the phenomenon known as quantum nonlocality. In this case one must deal with
quantum generalizations of causal structures, where nodes are now allowed to represent either quantum
or classical systems, and edges may represent quantum operations. An important conceptual difference to
the purely classical setup is rooted in the fact that quantum operations disturb their input. Put differently,
quantum mechanics does not assign a joint state to the input and the output of an operation. Therefore, there
is in general no analogue to (1), i.e., a global density operator for all nodes in a quantum causal structure
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Figure 1: (a) and (b) DAGs with opposite causal directions and that can be distinguished even if only pairwise
information is available. (c) An example of distributed architecture involving bipartite entangled states. Each of the
underlying quantum states can connect at most two of the observable variables, what implies a non-trivial monogamy
of correlations, for example, that I(A : B) + I(A : C) ≤ H(A). d The quantum causal structure associated with the
information causality principle.

cannot be defined. However, if we pick a set of nodes that do coexist (e.g. because they are classical, or
because they are created at the same instance of time), then we can again ask: Which correlations, between
coexisting nodes, can result from a given quantum causal structure?

To begin with, we note that most often and for a variety of reasons, one is interested in testing causal
structures with latent (“hidden”) variables, that is, joint observations might be constrained. For instance,
in quantum non-locality these reasons are physical: random variables corresponding to non-commuting
observables cannot always be jointly measured. In general, there might also be practical reasons, for example:
we may have no access to the variable describing the genetic disposition of a patient to become both a smoker
and to develop lung cancer (not the least because we do not know whether such a genetic influence exists).
In that case, we are faced with the problem of characterizing the set of marginal distributions a given causal
structure can give rise to. If an observed distribution lies outside the set of marginals of a candidate model,
then that model can be rejected as an explanation of the data. Unfortunately, even in the purely classical case,
it is widely appreciated that causal structures involving latent variables impose highly non-trivial constraints
on the distributions compatible with it [10–12].

The technical difficulties stem from the fact that the the causal relations implied by a given causal
structure are encoded in conditional independencies (CI), that amount to non-trivial algebraic conditions
on probabilities. More precisely, the marginal regions are semi-algebraic sets that can, in principle, be
characterized by a finite number of polynomial equalities and inequalities [10]. However, it is safe to say that
in practice, algebraic statistics is still limited to very simple models.

In order to circumvent this problem, we proposed in [5] an information-theoretic approach for causal
inference, describing a systematic and practical algorithm for answering the classical question. The basic
insight is that the algebraic condition p(x, y) = p1(x)p2(y) for independence becomes a linear relation
H(X,Y ) = H(X) +H(Y ) on the level of entropies. This opens up the possibility of using computational
tools such as linear programming to find marginal constraints – which contrasts pleasantly with the complexity
of algebraic methods that would otherwise be necessary. In the subsequent work [6] we have generalized the
classical framework in order to deal with quantum generalizations of causal structures.

Our main message is that a significant amount of information about causation is contained in the entropies
of observable variables and that there are relatively simple and systematic ways of unlocking that information,
both in classical [5] and quantum realms [6]. We will make that case by discussing a great variety of classical
and quantum applications, which we briefly summarize here.

Distinguishing causal directions.— If the full joint distribution of (X,Y,W,Z) is accessible, then the
two networks in Fig. 1 a) and b) can be distinguished, thus revealing the “direction of causation”. Here we
show that the same is possible even if only two variables are jointly accessible at any time. Fundamentally,
inferring the direction of causation between two variables is a notoriously thorny issue, hence it is far from
trivial that it can be done from information about several pairwise distributions. On the practical side one
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can cite Mendelian randomization as a good example where the joint distribution on all variables is often
unavailable [13]. In general, the variables in Fig. 1 a) and b) could represent properties of short-lived or
fragile specimen that decay before several tests can be completed, or that are degraded by multiple invasive
probes.

Quantifying (classical) causal influences.— Various measures of (classical) causal influence have been
studied in the literature. Of particular relevance to us is the one recently introduced in [14]. The main idea is
that the causal strength CX→Y between a variable X on another variable Y should measure the impact of an
intervention that removes the arrow between them. It follows that

CX→Y ≥ I(X : Y |PAX
Y ), (2)

where PAX
Y stands for the parents of variable Y other than X . Because the quantity I(X : Y |PAX

Y ) appears
naturally in our description, it readily allows us to bound the causal strength CX→Y in arbitrary classical
causal structures. We then go on to present two corollaries of this result: First, it follows that the degree of
violation of an entropic inequality often carries an operational meaning. Second, under some assumptions,
the finding will allow us to introduce a novel way of distinguishing dependence created through common
ancestors from direct causal influence. That is, in these cases we can safely state, opposed to the common
folklore, that “(some kinds of)correlations do imply causation”.

Distributed quantum architectures.—Consider a scenario where, in a first step, several few-body quantum
states are distributed among a number of parties. In a second step, each party processes those parts of the
states it has access to (e.g. by performing a coherent operation or a joint measurement). Such setups are
studied e.g. in distributed quantum computing [15, 16], quantum networks [17], quantum non-locality [18],
and quantum repeaters [19]. Which limits on the resulting correlations are implied by the network topology
alone? Our framework can be used to compute these systematically. We prove, e.g., certain monogamy
relations between the correlations that can result from measurements on distributed quantum states (see Fig.
1).

Information causality.—The “no-signalling principle” alone is insufficient to explain the “degree of
non-locality” exhibited by quantum mechanics [20]. This has motivated the search for stronger, opera-
tionally motivated principles, that may single out quantum mechanical correlations [21–27]. One of these
is information causality (IC) [22] which posits that an m bit message from Alice to Bob must not allow
Bob to learn more than m bits about a string held by Alice. A precise formulation of the protocol involves
a relatively complicated quantum causal structure (Fig. 1b). It implies an information-theoretic bound
on the mutual information between bits Xi held by Alice and guesses Yi of these by Bob [22], namely:∑n

i=1 I(Xi : Yi) ≤ H(M). Here, we note that the IC setup falls into our framework and we put the
machinery to use to generalize and strengthen it. We will show that by taking additional information into
account, our strengthened IC principle given by

n∑
i=1

I(Xi : Yi,M) +

n∑
i=2

I(X1 : Xi|Yi,M) ≤ H(M), (3)

can identify super-quantum correlations that could not have been detected in the original formulation.

These applications aside, we believe that the main contribution of this research program is to highlight the
power of systematically analyzing entropic marginals. A number of future directions for research immediately
suggest themselves. In the classical realm it would be fruitful to further explore our method to test highly
non-trivial models (inducing semi-algebraic sets) such as in the “homophily versus contagion” problem
arising in the study of social networks [12]. In the quantum domain, it will likely be fruitful to consider
multi-partite versions of information causality or other information theoretical principles, to further look into
the operational meaning of entropy inequality violations and possibly to look for applications in many body
problems (for example, with nearest neighbours interactions).
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