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We prove a version of the Berry-Esseen theorem for quantum lattice systems. Given a
local quantum Hamiltonian on N particles and a quantum state with a finite correlation
length, it states that measurement of the energy in the state follows a normal distribution,
up to error scaling as O(N−1/2 polylog(N)). This is optimal up to a poly-logarithmic factor.

We then give an application of the theorem to the problem of showing the equivalence
of the canonical and microcanonical ensembles for quantum lattice systems. For any model
with short ranged interactions and any temperature for which the system has a finite corre-
lation length, we prove that the canonical state of N particles has its local reduced density
matrices of Õ(

√
N) particles equal to the reduced density matrices of the microcanonical

state of the same mean energy. This result is established by combining the Berry-Esseen
theorem for quantum lattice systems with techniques from quantum information theory.

I. QUANTUM BERRY-ESSEEN THEOREM FOR QUANTUM LATTICE SYSTEMS

In this paper we prove a variant of the Berry-Esseen Theorem in the setting of quantum lattice
systems. Before stating the result let us introduce the setting and the notation we consider.

We let Λ = {1, . . . , n}d be a finite collection of vertices or lattice sites in d dimensions with
N = nd particles 1. We consider k-local Hamiltonians, acting on the Hilbert space H = ⊗i∈XHi,
given by

H =
∑
i∈Λ

Hi, (1)

where we assume that the Hi are Hermitian, ‖Hi‖ ≤ 1, and local in the sense that Hi acts only on
sites j with d(i, j) ≤ k (for the Manhattan metric d(., .) in the lattice).

We say a state ρ ∈ D(H) (the set of density matrices in H) has correlation length ξ if for every
two regions X,Y ,

cor(X,Y )ρ := max
M∈X,N∈Y

|tr((M ⊗N)(ρXY − ρX ⊗ ρY ))|
‖M‖‖N‖

≤ 2−dist(X,Y )/ξ, (2)
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1 The result of this section can be generalized to more general geometries; see Section IV
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where

dist(X,Y ) := min
x∈X,y∈Y

dist(x, y). (3)

Write the spectral decomposition of H as

H =
∑
k

Ek|Ek〉〈Ek| (4)

with E0 ≤ E1 ≤ . . . ≤ E2N .

Define the function

f(ξ, k, s) :=

(
1 +

ξ

k

)2d

kd/2
(

max

{
1

s
,

1

s3

}
+ e−1/ξξD max

{
1

s2
, s3

})
(5)

Our main result is the following:

Theorem 1. Let H be a k-local Hamiltonian in Λ = [n]d with N = nd particles and ρ a state with
correlation length ξ > 0. Let

µ = tr(ρH), σ = tr(ρ(H − µ)2)1/2, s =
σ

N1/2kd/2
. (6)

Then

sup
y
|F (y)−G(y)| ≤ Cf(ξ, k, s)

log2d(N)√
N

(7)

where C > 0 depends only on the dimension of the lattice,

F (y) :=
∑

k:Ek≤y
〈Ek|ρ|Ek〉, (8)

and

G(y) :=
1√

2πσ2

∫ y

−∞
dz e−

(z−µ)2

2σ2 . (9)

is the Gaussian cumulative distribution with mean µ and variance σ2.

Comparison with Previous Work: Quantum central limit theorems, so the fact that supy |F (y) −
G(y)| goes to zero as N goes to infinity, have been proven in [4, 5]. To the best of our knowledge,
the rate of convergence has, in the present context, not been considered so far. Of course, the
classical Berry-Esseen bound for sums of random variables has a long tradition starting in the
1940-ties with [1, 6]; see [7] and references therein for more recent work on the subject.

Proof Idea: We closely follow the classical proof for sums of random variables in Refs [2] and
[3]. Our main innovation is to introduce auxiliary operators that will allow us to, despite non-
commutativity, arrive at the same scaling. We also give a method for bounding the error when
approximating products of matrix exponentials in terms of their Taylor expansion, which may be
of independent interest.

Theorem 1, in addition to its own value in quantum statistics, has an interesting application
to the equivalence of canonical and microcanonical ensembles for quantum many-body systems,
which we now consider.
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II. EQUIVALENCE OF STATISTICAL MECHANICS ENSEMBLES

In statistical mechanics there are two main ensembles (at zero chemical potential) that can be
used to compute equilibrium properties of large systems: the microcanonical and the canonical
ensemble. Roughly, the first describes the physics of a system that is isolated and has total fixed
energy. The second describes the physics of a system that is at thermal equilibrium with a large
environment at fixed temperature T . It turns out that in many cases the two ensembles give the
same predictions for very large systems. There is a long sequence of studies aiming at elucidat-
ing under what conditions the two ensembles can be used interchangeably (see e.g. [15–20] and
discussion below).

In textbooks the canonical ensemble is commonly introduced by considering the microcanon-
ical ensemble of the system and a large environment and restricting to observables of the system
only. Then under the assumption that the interactions of the system and environment are very
weak, the canonical ensemble emerges. However in many situations the assumption of weak
coupling is not justified. It is therefore an important question to find more general conditions for
the equivalence of the two ensembles. In this section we give such condition: we show that short
ranged interactions and a finite correlation length already lead to the equivalence of ensembles
for every sufficiently large finite volume.

Let ρT := e−H/T /Z(T ) be the canonical state at temperature T (also known as Gibbs state or
thermal state) and Z(T ) := tr(e−H/T ) the partition function (we set Boltzmann constant to unit).
In the canonical ensemble at temperature T , averages are computed using ρT .

Define the energy density at temperature T as

u(T ) :=
1

N
tr(HρT ), (10)

the entropy density at temperature T as

s(T ) :=
1

N
S(ρT ), (11)

and the specific heat capacity at temperature T as

c(T ) :=
du(T ′)

dT ′

∣∣∣∣
T ′=T

=
1

NT 2

(
tr(H2ρT )− tr(HρT )2

)
. (12)

Note that if ρT has a correlation length ξ, then c(T ) ≤ O(ξ).

Let

Me,δ := {k : |Ek − eN | ≤ δ
√
N}, (13)

and define the microcanonical state of mean energy e and energy spread δ
√
N by

τe,δ :=
1

|Me,δ|
∑

k∈Me,δ

|Ek〉〈Ek|. (14)

In the microcanonical ensemble averages are computed using τe,δ.

We can now state the main result of this section. It shows that for general quantum many-body
systems at non-critical temperatures (meaning that the canonical, Gibbs, state has a finite correla-
tion length), the canonical ensemble gives essentially the same predictions as the microcanonical
ensemble, for every observable that acts on roughly

√
N particles, with N the total number of

particles of the system.

Given a region R, we denote by trΛ\R the partial trace over the complement of R in Λ.
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Theorem 2. Let Cl be the set of all hypercubes contained in Λ := {1, . . . , n}d of volume ld. Let H be a
k-local Hamiltonian on Λ. Suppose that T is such that the Gibbs state ρT has correlation length ξ. Let
N := nd and

E :=

{
e : |eN − tr(HρT )| ≤ 1

4
Tc(T )

1
2

√
N

}
. (15)

Set ν := 4πf(ξ, k, c(T )
1
2k−d/2)Tc(T )

1
2 . Let δ be any number such that ν log2d(N)√

N
≤ δ ≤ 1

8Tc(T )
1
2 .

Then for every triple (ε, l, e) such that ε > 0,

l ≤
(
Tε2

12ν

N

log2d(N)

) 1
2d

, (16)

and e ∈ E:

E
C∈Cl

∥∥trΛ\C(τe,δ)− trΛ\C(ρT )
∥∥

1
≤ ε, (17)

where the expectation is taken uniformly over Cl.

We note that the condition of a finite correlation length is necessary. Indeed as shown in [8], the
two ensembles differ in the Ising model close to criticality, when the correlation length diverges,
for regions of size O(log(N)). It is an open question if a similar result can be obtained for critical
systems and small enough regions, assuming that correlations decay algebraically; in our proof it
is important that the correlations decay exponentially.

Any system is expected to have a finite correlation length whenever it is away from a critical
point. One dimensional systems always have a finite correlation length at any temperature [9],
while in any dimensions there is a critical temperature (depending only on the geometry of the
lattice) above which every system has a finite correlation length [10] 2.

We also note we do not need to take the average over regions R ∈ Rl if we assume the Hamil-
tonian is translation invariant, as in this case σR is the same for all R ∈ Rl.

Beyond Microcanonical States: How crucial is the use of the microcanonical ensemble? It turns
out that Theorem 2 can be generalized to a much larger class of states. In a nutshell all that is
required is that the state is concentrated around a given energy and has sufficiently large entropy.
To state the condition precisely, define the max-relative entropy of two states π and σ [12]:

Smax(π||σ) := {minλ : ρ ≤ 2λσ}, (18)

and its smooth version

Sεmax(π||σ) := min
π̃∈Bε(π)

Dmax(π̃||σ), (19)

with Bε(π) := {π̃ : ‖π − π̃‖1 ≤ ε}.
Then we have

2 Ref. [10] proves a finite correlation length in the high temperature phase for a different correlation function than the
one used in Eq. (2). But using [11] one can show that the two notions are equivalent in the high temperature regime.
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Corollary 3. Let Cl be the set of all hypercubes contained in Λ := {1, . . . , n}d of volume ld. Let H be a
k-local Hamiltonian on Λ. Suppose that T is such that the Gibbs state ρT has correlation length ξ. Let
N := nd and

E :=

{
e : |eN − tr(HρT )| ≤ 1

4
Tc(T )

1
2

√
N

}
. (20)

Set ν := 4πf(ξ, k, c(T )
1
2k−d/2)Tc(T )

1
2 . Let δ be any number such that ν log2d(N)√

N
≤ δ ≤ 1

8Tc(T )
1
2 .

Consider a triple (ε, l, e) such that 1/4 ≥ ε > 0,

l ≤
(
Tε2

12ν

N

log2d(N)

) 1
2d

, (21)

and e ∈ E. Then

1. For every π such that Sεmax(π||τe,δ) ≤ n
1
2d ,

E
C∈Cl

∥∥trΛ\C(π)− trΛ\C(ρT )
∥∥

1
≤ 2ε, (22)

2. For states |ψ〉 drawn from the Haar measure in span{|Ek〉 : k ∈ Me,δ}, with probability 1 −
2−O(ε−2|Me,δ|),

E
C∈Cl

∥∥trΛ\C(|ψ〉〈ψ|)− trΛ\C(ρT )
∥∥

1
≤ 2ε, (23)

The second part of the corollary is a direct consequence of Theorem 2 and the result of [13] that
a generic state in a energy subspace is equal to the microcanonical state in small regions.

Comparison with Previous Work: The problem of equivalence of ensembles was considered al-
ready in the foundational work of Boltzmann and Gibbs. See [14] for a historical perspective. An
intuitive explanation for the equivalence in non-critical temperatures is the following: Whenever
there is a finite correlation length, the specific heat capacity is a constant. Then as the energy
is extensive, we find that it is concentrated around its mean value. However this argument is
too simplistic. Indeed it is easy to see that for large enough n, τe,δ and ρT (with e = u(T )) are
almost orthogonal. Therefore any meaningful argument for equivalence of ensembles must go
beyond the distribution of energies and somehow restrict the kind of observables considered (e.g.
observables acting in small regions).

The most fruitful direction so far has been to consider systems in the thermodynamical limit. In
this regime one can prove the equivalence of ensembles on the level of thermodynamical functions
[15, 17–19] (showing that the thermodynamical limits of the entropy density of the microcanonical
ensemble is the Legendre transform of the limit of the free energy density) and also on the level of
states, as we do here, both for classical [16] and, only very recently, also for quantum systems [20].
However the price of considering the thermodynamical limit – instead of the physically relevant
regime of very large but finite sizes – is that no finite bounds can be obtained on the size of the
regions on which the states are close.

In this respect Theorem 2 goes beyond the earlier work in several aspects:

• It covers the general case of non translation-invariant models.
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• It is based on the assumption of a finite correlation length, which is simpler than the as-
sumption of a unique phase region employed in [18–20].

• It gives explicit finite size bounds; for quite big regions of order Õ(
√
N) the two ensembles

already look the same.

• It shows that the equivalence holds true even for microcanonical states with very small
energy spread, of order O(logd(N)) and substantially smaller than the value O(N1/2) that
could have been expected.

• It shows that that any two microcanonical states τe,δ and τe′,δ′ are locally equivalent when-
ever |e−e′| ≤ O(

√
N) andO(logd(N)) ≤ δ+δ′ ≤ Õ(

√
N) (when ρT (e) has a finite correlation

length).

• It covers more general states than the microcanonical, showing that the important condition
is that the state is concentrated around a fixed energy and has sufficiently large entropy.

It is an interesting open question how small δ can be taken. We note that the eigenstate ther-
malization hypothesis (ETH) states that even for δ = 0, i.e. for a single eigenstate, one should
have thermal expectation values for regions small enough [21]. However, while believed to hold
true for several systems, there are known counterexamples to ETH – for instance systems with
many-body localization.

As we outline next, the proof of Theorem 2 is based on our quantum Berry-Essen theorem
and ideas of quantum information theory. Thus the result gives a new application of quantum
information to statistical mechanics, complementing recent studies in this direction (e.g. [13, 22,
23]).

Proof Idea: The proof of Theorem 2 is very different from the approach followed in [18–20], being
based on a combination of Theorem 1 and arguments from quantum information theory. We note
that the close-to-optimal error of Õ(N−

1
2 ) in Eq. (7) is crucial; if it were instead Ω(N−1/2+ν) for

any ν > 0 our proof would fail.

A quick summary of the argument is the following: First using Theorem 1 we show in Lemma
4 that

Smax(τe,δ||ρT ) ≤ O(logd(N)). (24)

We then consider a partition of the lattice [n]d into regions A1, ..., Am and R, where each Ai is a
d-dimensional cube of size ld separated from each other by a distance of 2ξld and R is composed
of the remaining sites of the lattice (see Fig 1). Denote ρA1...Am := trR(ρT ) and τA1...Am := trR(τe,δ).
Then by the data processing inequality for Smax and Eq. (24):

Smax(τA1...Am ||ρA1...Am) ≤ O(logd(N)). (25)

From the fact that ρT has a finite correlation length we show in Lemma 6 that ‖ρA1...Am −ρA1 ⊗
. . . ⊗ ρAm‖1 ≤ m2−l

d
. Then in Lemma 5 we show that this bound together with Eq. (25) implies

that

Sεmax(τA1...Am ||ρA1 ⊗ . . .⊗ ρAm) ≤ O(logd(N)). (26)

for ε = O(eν log2(d)/T )m1/22−l
d/2.
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FIG. 1: Depiction of regions A1, . . . , Am, each of linear size l and distance 2ξld from each other, and their comple-
ment R.

The final part of the proof is to argue that the equation above implies that for most i, τAi is close
to ρAi . We do so by making use of basic properties of the quantum entropy and relative entropy,
in particular the subadditivity of entropy and Pinsker’s inequality. Indeed with

S(ρ||σ) := tr(ρ(log ρ− log σ)) (27)

the relative entropy and

Sε(ρ||σ) := min
ρ̃∈Bε(ρ)

S(ρ̃||σ), (28)

we find that Eq. (26) also holds for Sε(τA1...Am ||ρA1 ⊗ . . .⊗ ρAm). Then by subadditivity of the von
Neumann entropy we can show that

E
i
Sε(τAi ||ρAi) ≤ O

(
logd(N)

m

)
. (29)

The result then follows from Pinsker’s inequality, which gives

2 ln(2)
√
Sε(τAi ||ρAi) ≥ ‖τAi − ρAi‖1 − ε. (30)

III. EQUIVALENCE OF STATISTICAL ENSEMBLES: PROOF OF THEOREM 2

We begin with the following lemma:

Lemma 4. Let H be a k-local Hamiltonian in Λ = [n]d, with N = nd particles. Let T > 0 be such that ρT
has a finite correlation length. Let ν := 4πf(ξ, k, c(T )1/2k−d/2)c(T )1/2T , δ = ν log2d(N)

N1/2 , and e be such

that |e− u(T )| ≤ c(T )
1
2 T

4
√
N

. Then

Smax(τe,δ||ρT ) ≤ 2ν

T
logd(N) +

1

2
log(N). (31)
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Proof. Define

Z(T, e, δ) :=
∑

k∈Me,δ

e−Ek/T . (32)

Using Theorem 1,

Z(T, e, δ)

Z(T )
= tr

ρT ∑
k∈Me,δ

|Ek〉〈Ek|


= F (eN + δ

√
N)− F (eN − δ

√
N)

≥ G(eN + δ
√
N)−G(eN − δ

√
N)− 2f(ξ, k, s)

log2d(N)√
N

(33)

with F (y) given by Eq. (8), with ρ = ρT , and f(ξ, k, s) given by Eq. (5). Since σ2 = tr(H2ρT ) −
tr(HρT )2 = c(T )T 2N , we get s = c(T )1/2Tk−d/2.

We have

G(eN + δ
√
N)−G(eN − δ

√
N) = erf

(
eN + δ

√
N − u(T )N

σ

)
− erf

(
eN − δ

√
N − u(T )N

σ

)

= erf

(
1

4
+

δ

C(T )
1
2T

)
− erf

(
1

4
− δ

C(T )
1
2T

)
=: M. (34)

where

erf(x) :=
1√
π

∫ x

0
e−t

2/2dt. (35)

Using the Maclaurin series erf(z) = 2π−1/2
(
z − 1

3z
3 + 1

10z
5 − 1

42z
7 + . . .

)
,

M ≥ 3f(ξ, k, s)
log2d(N)√

N
, (36)

and from Eq. (33)

Z(T, e, δ)

Z(T )
≥ 2f(ξ, k, s)

log2d(N)√
N

. (37)

Since for every k ∈Men,δ,

1

|Me,δ|
≤ e2ν logd(N)/T e−Ek/T

Z(T, e, δ)
. (38)

we find

τe,δ ≤ e2ν logd(N)/T 1

Z(T, e, δ)

∑
k∈Me,δ

e−Ek/T |Ek〉〈Ek|

≤ N1/2e2ν logd(N)/T 1

Z(T )

∑
k∈Me,δ

e−Ek/T |Ek〉〈Ek|

≤
√
Ne2ν logd(N)/TρT , (39)

from which Eq. (31) follows. ut
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Lemma 5. Let H be a local Hamiltonian in Λ = [n]d, with N = nd particles. Let T > 0 be such that ρT
has correlation length ξ. Let ν > 0, δ = ν logd(N)

N1/2 , and e be such that |e − u(T )| ≤ c(T )1/2T

4N1/2 . Consider a
partition of the lattice [n]d into regions A1, ..., Am and R, where each Ai is a d-dimensional cube of size ld

separated from each other by a distance of 2ξld and R is composed of the remaining sites of the lattice (see
Fig 1). Let ρA1...Am := trR(ρT ) and τA1...Am := trR(τe,δ). Then

Sκmax(τA1...Am ||ρA1 ⊗ . . .⊗ ρAm) ≤ 2ν

T (1− κ)
logd(N) +

1

2(1− κ)
log(N) (40)

with

κ := 8N1/4eν logd(N)/Tm1/22−l
d
2l
d/2. (41)

Proof. By Lemma 4 and the monotonicity of Smax under partial trace,

Smax(τA1...Am ||ρA1 ⊗ . . .⊗ ρAm) ≤ 2ν

T
logd(N) +

1

2
log(N). (42)

By Lemma 6, ∥∥trR(ρT )− trΛ\A1
(ρT )⊗ . . .⊗ trΛ\Am(ρT )

∥∥
1
≤ m2−2ld2l

d
. (43)

The statement then follow from Lemma 8.

ut

We are now in position to prove Theorem 2. The idea is to combine Lemma 5 with basic prop-
erties of the quantum relative entropy. Given two quantum states ρ and σ, the relative entropy is
defined as

S(ρ||σ) := tr(ρ(log(ρ)− log(σ))). (44)

It satisfies the following properties

• (Pinsker’s inequality)

S(ρ||σ) ≥ 1

2 ln(2)
‖ρ− σ‖21. (45)

• (Relation with Smax [12])

S(ρ||σ) ≤ Smax(ρ||σ). (46)

• (super-additivity)

S(ρA1...Am ||σA1 ⊗ . . .⊗ σAm) ≥
m∑
k=1

S(ρAi ||σAi) (47)

The third property is a easy consequence of subadditivity of entropy. Indeed:

S(ρA1...Am ||σA1 ⊗ . . .⊗ σAm) = −S(ρA1...Am)− tr(ρA1⊗...⊗Am log(σA1 ⊗ . . .⊗ σAm))

≥ −
m∑
k=1

S(ρAi)− tr(ρA1...Am log(σA1 ⊗ . . .⊗ σAm))

=

m∑
k=1

S(ρAi ||σAi). (48)
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Theorem 2 (restatement). Let Cl be the set of all hypercubes contained in Λ := {1, . . . , n}d of volume ld.
Let H be a k-local Hamiltonian on Λ. Suppose that T is such that the Gibbs state ρT has correlation length
ξ. Let N := nd and

E :=

{
e : |eN − tr(HρT )| ≤ 1

4
Tc(T )

1
2

√
N

}
. (49)

Set ν := 4πf(ξ, k, c(T )
1
2k−d/2)Tc(T )

1
2 . Let δ be any number such that ν log2d(N)√

N
≤ δ ≤ 1

8Tc(T )
1
2 .

Then for every triple (ε, l, e) such that ε > 0,

l ≤
(
Tε2

12ν

N

log2d(N)

) 1
2d

, (50)

and e ∈ E:

E
C∈Cl

∥∥trΛ\C(τe,δ)− trΛ\C(ρT )
∥∥

1
≤ ε, (51)

where the expectation is taken uniformly over Cl.

Proof. We prove the statement of the theorem with δ = ν log2d(N)

N1/2 . The case of larger δ will then
follow by a simple averaging argument.

As in Lemma 5, consider a partition of the lattice [n]d into regions A1, ..., Am and R, where
each Ai is a d-dimensional cube of size ld separated from each other by a distance of 2ξld and R is
composed of the remaining sites of the lattice (see Fig 1).

By Lemma 5 and Eq. (46) there is a πA1...Al s.t. ‖πA1...Al − τA1...Al‖1 ≤ κ

S(πA1...Al ||ρA1 ⊗ . . .⊗ ρAl) ≤
2ν

T (1− κ)
logd(N) +

1

2(1− ν)
log(N) (52)

By Eq. (47)

m∑
k=1

S(πAk ||ρAk) ≤ S(πA1...Al ||ρA1 ⊗ . . .⊗ ρAl) ≤ 3ν logd(N)/T. (53)

Noting that m = N/(ld + (2ξ)dld
2
),

E
k
S(πAk ||ρAk) ≤ 3ν

T
logd(N)

ld
2

N
. (54)

Using Pinsker’s inequality (Eq. 45) and the convexity of x 7→ x2,

E
k
‖πAk − ρAk‖1 ≤

√
3ν

T
logd(N)

ld2

N
. (55)

Finally, by Eq. (40),

E
k
‖τAk − ρAk‖1 ≤

√
3ν

T
logd(N)

ld2

N
+ 2N1/2e2c logd(N)/Tm2−l

d
. (56)

Choosing l as in Eq. (50) we find that the L.H.S. of the equation above is smaller than ε. ut
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The following auxiliary lemmas were used in the proofs above.

Lemma 6. Let πA1,...,Am ∈ D((CD)⊗m) be such that for every j ∈ [l],

cor(A1, . . . , Aj−1 : Aj) ≤ ε. (57)

Then

‖πA1,...,Am − πA1 ⊗ . . .⊗ πAm‖1 ≤ mD
2ε. (58)

Proof. By Lemma 7, for every j ∈ [l],∥∥πA1,...,Aj−1,Aj − πA1,...,Aj−1 ⊗ πAj
∥∥

1
≤ D2cor(A1, . . . , Aj−1 : Aj) ≤ D2ε. (59)

Then by a telescoping sum and triangle inequality,

‖πA1,...,Am − πA1 ⊗ . . .⊗ πAm‖1 =

∥∥∥∥∥∥
m∑
j=1

(Lj − Lj−1)

∥∥∥∥∥∥
≤

m∑
j=1

‖πA1,...,Aj − πA1,...,Aj−1 ⊗ πAj‖1 ≤ mD2ε, (60)

with

Lj := πA1,...,Aj ⊗ πAj+1 ⊗ . . .⊗ πAm . (61)

ut

Lemma 7. [Lemma 20 of [24]] For every L ∈ B(Cr ⊗ CR) with r ≤ R,

‖L‖1 ≤ r2 max
‖X‖,‖Y ‖≤1

|tr((X ⊗ Y )L)|. (62)

The second Lemma was first proven by Datta and Renner in [25], in a different formulation,
and appeared in a form equivalent to the one bellow as Lemma C.5 of [26].

Lemma 8. Let ρ, σ ∈ D(H) be such that

Dmax(ρ||σ) ≤ λ. (63)

Let σ̃ ∈ Bε(σ). Then

D2λ4
√
ε

max (ρ||σ̃) ≤ λ

1− 42λ
√
ε

(64)

Proof. The statement follows from Lemma C.5 of [26] with Y = 2λσ and ∆ := 2λ|σ − σ̃|. ut
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IV. QUANTUM BERRY-ESSEEN: PROOF OF THEOREM 1

To facilitate the exposition we will use a slightly different notation in this section from the rest
of the paper.

We let X a finite collection of vertices or lattice sites equipped with a metric d : X ×X → N and
consider operators acting on the Hilbert spaceH = ⊗i∈XHi of the form

X̂ =
∑
i∈X

X̂i, (65)

where we assume that the X̂i are hermitian, bounded, ‖X̂i‖ ≤ x/2, and local in the sense that
there is a R ∈ N such that X̂i acts only on sites j with d(i, j) ≤ R.

We will need the notion of dimension of X : We call D the dimension of X if it is the smallest
D > 0 such that there is a constant cD > 0 such that for every l > 0∣∣{i ∈ X ∣∣ d(i, j) = l

}∣∣ =
∑
i∈X

d(i,j)=l

1 ≤ cDlD−1. (66)

We will assume that D ≥ 1. For subsets A,B ⊂ X , we denote the distance between them as

d(A,B) = min
i∈A
j∈B

d(i, j). (67)

We let %̂ a state acting onH, write

〈 · 〉 = tr[%̂ · ] (68)

and denote

µ = 〈X̂ 〉, σ =
〈
(X̂ − µ)2

〉1/2
, s =

σ

x|X |1/2RD/2
, (69)

assuming that s > 0. We assume that the state %̂ is such that there is l0 ∈ N, l0 > 0, and a
non-increasing f : {l0 + 1, l0 + 1, . . . } → R≥0 such that for all operators Â = Â ⊗ idX\A and
B̂ = B̂ ⊗ idX\B with d(A,B) > l0 we have∣∣∣〈ÂB̂〉 − 〈Â〉〈B̂〉∣∣∣ ≤ ‖Â‖‖B̂‖f(d(A,B)). (70)

We write

c[f ] =
(

1 +
∞∑
l=1

f(l + l0)lD−1
)1/2

. (71)

Write

X̂ =
∑
n

xn|n〉〈n| (72)

and consider

F (y) =
∑

n:xn≤y
〈n|%̂|n〉. (73)
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Define

∆ = sup
y
|F (y)−G(y)| (74)

for the Gaussian cumulative distribution

G(y) =
1√

2πσ2

∫ y

−∞
dz e−

(z−µ)2

2σ2 . (75)

We prove

Theorem 9. Let %̂ such that f(l) = e−l/ξ for some ξ > 0 and let log(|X |) > max{1, ( l04R)5/3}. Then

∆ ≤ C
(

max

{
1,

1

s2

}
+ c[f ]s+ e−1/ξξD max

{
1

s
, s2

})
RD/2

1

s|X |1/2

(
ξ

R
log(|X |) +

log(|X |)
log(log(|X |))

)2D

,

(76)

where C > 0 depends only on the dimension of the lattice.

Proof. We first note that

∆ = sup
y
|F (σy + µ)−G(σy + µ)| = sup

y

∣∣∣ ∑
n:xn−µ

σ
≤y

〈n|%̂|n〉 − 1√
2π

∫ y

−∞
dz e−

z2

2

∣∣∣. (77)

We will employ Esseen’s integral bound [1]

∆ ≤ c1

T
+

∫ T

0
dt

∣∣ϕ(t)− e−t
2/2
∣∣

|t|
, (78)

where T > 0, otherwise arbitrary, c1 is an absolute constant, and ϕ is the Fourier-Stieltjes trans-
form of F (σy + µ), i.e., the characteristic function

ϕ(t) =

∫ ∞
−∞

eity dF (σy + µ) =
∑
n

〈n|%̂|n〉eit(xn
σ
−µ) =

〈
eit(X̂/σ−µ)

〉
=:
〈
eitŶ〉, (79)

where

Ŷ =
1

σ

∑
i∈X

(X̂i − 〈X̂i〉) =:
1

σ

∑
i∈X

Ŷi, 〈Ŷ〉 = 0,
〈(∑

i∈X
Ŷi

)〉
= σ2, ‖Ŷi‖ ≤ x. (80)

To not overburden notation, we redefine X := Y and X̂i := Ŷi.

In order to apply Esseen’s bound, the goal is to bound |ϕ(t) − e−t
2/2|, which we do along the

lines of [2, 3], setting up a differential equation for ϕ(t) and bounding its derivative. The main
difference to [2, 3] will be to introduce auxiliary operators (operators R̂n(t) and Ŝn(t) below) in
order to be able to bound the non-commuting terms.

Throughout, we denote the support of an operator Ô(t) = Ô(t)⊗ idX\SÔ(t)
by SÔ(t) and its n-th

derivative by Ô(n)(t). We let t ≥ 0. We have

d

dt
ϕ(t) = i〈X̂ eiX̂ t〉 =

i

σ

∑
j∈X
〈X̂je

iX̂ t〉. (81)
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We now fix j ∈ X and 0 < h ∈ N. For n ∈ N, n > 0, we let

Ẑn =
1

σ

∑
i∈X

d(i,j)≤2Rhn

X̂i, ẑn = X̂ − Ẑn =
1

σ

∑
i∈X

d(i,j)>2Rhn

X̂i,

ξ̂n(t) = ei(ẑn−1−ẑn)tR̂n(t)− id, Ξ̂n(t) = ξ̂1(t) · · · ξ̂n(t),

η̂n(t) = Ŝn(t)e−iẐnt − id,

(82)

and we write Ẑ0 = X̂j/σ, ẑ0 = X̂ , Ξ̂0 = id. Here, R̂n(t) and Ŝn(t) are arbitrary operators and we
will choose them in Section IV A. One finds (see Appendix A for details and compare Refs. [2, 3])

〈X̂je
iX̂ t〉 =

(
i〈X̂jX〉t+ g(t)

)
ϕ(t) + h(t), (83)

where g(t) = g1(t) + g2(t) + g3(t), h(t) = h1(t) + h2(t) + h3(t),

g1(t) = −i
(
〈X̂j ẑ1〉 − 〈X̂j〉〈ẑ1〉

)
t,

g2(t) =
〈
X̂j ξ̂1(t)

〉
+ i〈X̂j ẑ1〉t− i〈X̂jX〉t,

g3(t) =
〈
X̂j ξ̂1(t)

〉
〈η̂2(t)〉+

k∑
n=3

〈
X̂jΞ̂n−1(t)

〉
〈(η̂n(t) + id)〉,

h1(t) =
k∑

n=1

(
〈X̂jΞ̂n−1(t)eiẑnt〉 − 〈X̂jΞ̂n−1(t)〉〈eiẑnt〉

)
,

h2(t) =

k∑
n=2

〈
X̂jΞ̂n−1(t)

〉〈(
η̂n(t)− 〈η̂n(t)〉

)
eiX̂ t〉,

h3(t) = 〈X̂jΞ̂k(t)e
iẑkt〉+

k−1∑
n=0

〈X̂jΞ̂n(t)r̂n(t)eiẑn+1t〉+

k∑
n=2

〈
X̂jΞ̂n−1(t)

〉
〈ŝn(t)〉,

r̂n(t) = ei(ẑn−ẑn+1)t
(

e−i(ẑn−ẑn+1)teiẑnte−iẑn+1t − R̂n+1(t)
)

=: ei(ẑn−ẑn+1)
(
ẐR,n+1(t)− R̂n+1(t)

)
,

ŝn(t) =
(

e−i(−X̂+Ẑn)te−iX̂ teiẐnt − Ŝn(t)
)

e−iẐnteiX̂ t =:
(
ẐS,n(t)− Ŝn(t)

)
e−iẐnteiX̂ t.

(84)

In the following section, we make the operators R̂n(t) and Ŝn(t) explicit and derive some of their
properties and give bounds on |g2(t) + g3(t)| and |h3(t)|. In Sections IV B-IV D, we derive bounds
to the remaining functions in Eq. (84). Equipped with these bounds, we come back to Eqs. (81)
and (83) in Section IV E to finish the proof.

ut

A. Operators R̂n(t) and Ŝn(t)

We let M ∈ N, M ≥ 2, and put

R̂n(t) = id +
M∑
m=2

Ẑ
(m)
R,n (0)

tm

m!
,

Ŝn(t) = id +
M∑
m=2

Ẑ
(m)
S,n (0)

tm

m!
.

(85)
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For such operators, we have the following Lemma, which we prove in Appendix C.

Lemma 10. LetM ∈ N,M ≥ 2. LetA,B ⊂ X and Â =
∑

i∈A Ŷi, B̂ =
∑

i∈B Ŷi with Ŷi local (supported
on {k ∈ X | d(i, k) ≤ R}) and bounded, ‖Ŷi‖ ≤ y. Denote the support of [Â, B̂] by S. Let

Ẑ(t) = e−it(Â+B̂)eitÂeitB̂, ẐM (t) = id +
M∑
m=2

Ẑ(m)(0)
tm

m!
. (86)

Then SẐM (t) ⊂ {i ∈ X | d(i,S) ≤ 2(M − 2)R}. Further, let C ⊂ X × X such that [Â, B̂] =∑
(i,j)∈C [Ŷi, Ŷj ] and let β such that

∑
(i,j)∈C ‖[Ŷi, Ŷj ]‖ ≤ β. If τ := 2tmax{2ycD(2R)D,

√
β/2} < 1/2

then

‖Ẑ(t)− ẐM (t)‖ ≤ 2τM+1 and ‖Ẑ(m)
M (t)‖ ≤ 2m!(2τ/t)m. (87)

We set out to apply the lemma to ẐR,n(t) and ẐS,n(t), which we defined in Eq. (84) and which
are of the form (86) with Ŷi = X̂i/σ (such that y = x/σ). To this end, we compute the correspond-
ing commutators: We have [ẑ0,−ẑ1] = [ẑ1, X̂ ] = [ẑ1, Ẑ1], [−X̂ , Ẑn] = [Ẑn, ẑn], and for n > 1

[ẑn−1,−ẑn] = [ẑn, X̂ ]− [ẑn, Ẑn−1] = [ẑn, Ẑn]− [ẑn, Ẑn−1] = [ẑn, Ẑn], (88)

where the last inequality holds as h ≥ 1.3 Now, for n ≥ 1, we have

[ẑn, Ẑn] =
1

σ2

∑
i,k∈X

d(i,j)>2Rhn
d(k,j)≤2Rhn

[X̂i, X̂k] =
1

σ2

∑
i,k∈X

d(i,j)>2Rhn
2Rhn−2R<d(k,j)≤2Rhn

d(i,k)≤2R

[X̂i, X̂k],

(89)

i.e.,

‖[ẑn, Ẑn]‖ ≤ 1

σ2

∑
i,k∈X

d(i,j)>2Rhn
2Rhn−2R<d(k,j)≤2Rhn

d(i,k)≤2R

‖[X̂i, X̂k]‖ ≤
2x2

σ2

∑
i,k∈X

2Rhn−2R<d(k,j)≤2Rhn
d(i,k)≤2R

1

≤ 2x2cD(2R)D

σ2

∑
k∈X

2Rhn−2R<d(k,j)≤2Rhn

1 ≤
2x2c2

D(2R)D

σ2

2Rhn∑
l=2Rhn−2R+1

lD−1

≤ 2

(
2xcD(2R)D

σ

)2

(hn)D−1 =: βn,

(90)

for which we have
√
βn/2 = max{2xcD(2R)D/σ,

√
βn/2}, i.e., applying the lemma, we have for

τn = 2t
√
βn/2 = 4t

xcD(2R)D

σ
(hn)

D−1
2 ≤ 1/2 (91)

that

‖ẐR,n(t)− R̂n(t)‖, ‖ẐS,n(t)− Ŝn(t)‖ ≤ 2τM+1
n and ‖R̂(m)

n (t)‖, ‖Ŝ(m)
n (t)‖ ≤ 2m!

(
4
√
βn/2

)m
.

(92)

3 ẑn is the sum of all X̂i/σ with d(i, j) > 2Rhn and Ẑn−1 is the sum of all X̂i/σ with d(i, j) ≤ 2Rh(n − 1), i.e., the
distance between the support of ẑn and the support of Ẑn−1 is at least 2Rh− 2R.
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Further, Eq. (89) implies that the support of [ẑn, Ẑn] is a subset of

S ⊂
⋃
i,k∈X

d(i,j)>2Rhn
2Rhn−2R<d(k,j)≤2Rhn

d(i,k)≤2R

{l ∈ X | d(i, l) ≤ R} ∪ {m ∈ X | d(m, k) ≤ R}

⊂
⋃
i,k∈X

d(i,j)>2Rhn
2Rhn−2R<d(k,j)≤2Rhn

d(i,k)≤2R

{l ∈ X | 2Rhn−R < d(l, j) ≤ 3R+ 2Rhn} ∪ {m ∈ X | 2Rhn− 3R < d(m, j) ≤ 2Rhn+R}

⊂ {l ∈ X | 2Rhn− 3R < d(l, j) ≤ 3R+ 2Rhn}.
(93)

We now derive a few implications of Eqs. (92) and (93), which we formulate as a lemma.

Lemma 11. Let n,M ∈ N, n ≥ 1, M ≥ 2. The support of SΞ̂n(t) and the support of S
η̂jn(t)

fulfil

SΞ̂n(t),Sη̂jn(t)
⊂
{
i ∈ X

∣∣ d(i, j) ≤ 2R(hn+M)−R
}
. (94)

Let τn = 2t
√
βn/2 ≤ 1/2. Then

‖Ξ̂n(t)‖ ≤
(

9
2h

D+1
2 τ1

)n
(n!)D−1,

‖η̂2(t)‖ ≤ 5 · 2D−1h
D+1
2 τ1.

(95)

Let 9
2τkh

D+1
2 k

D−1
2 ≤ 1/2. Then

|h3(t)| ≤ x
(

9
2τ1h

D+1
2
)2(

2D+1 1

2k
+

24

81

(
1
9h
−D+1

2 k−
D−1
2
)M−1

h−(D+1)

)
,

|g2(t) + g3(t)| ≤ x
(

145

324
+

14

9
2D + 4 · 6D−1

)(
9
2τ1h

D+1
2
)2
.

(96)

Proof. Direct application of Lemma 10 to Eq. (93) yields4

SR̂n(t),SR̂n(t) ⊂
{
i ∈ X

∣∣ 2R(hn−M) +R < d(i, j) ≤ 2R(hn+M)−R
}
, (97)

which implies that for n ≥ 1

SΞ̂n(t) ⊂
n⋃

m=1

Sẑm−1−ẑm ∪ SR̂m(t)

⊂
n⋃

m=1

{
i ∈ X

∣∣ 2Rh(m− 1)−R < d(i, j) ≤ 2Rhm+R
}
∪
{
i ∈ X

∣∣ 2R(hm−M) +R < d(i, j) ≤ 2R(hm+M)−R
}

⊂
{
i ∈ X

∣∣ d(i, j) ≤ 2R(hn+M)−R
}

(98)

4 We have that 2Rhn − 3R < d(s, j) ≤ 3R + 2Rhn for all s in S. From the lemma we have that SR̂n(t),SR̂n(t) ⊂{
i ∈ X

∣∣ d(i,S) ≤ 2(M − 2)R
}

. Thus, 2Rhn − 3R < d(s, j) ≤ d(i, j) + d(i, s) and d(i, j) ≤ d(i, s) + d(s, j) ≤
d(i, s)+3R+2Rhn ≤ 2(M−2)R+3R+2Rhn, i.e., with the choice d(i,S) = d(i, s), we have 2Rhn−3R−2(M−2)R <
d(i, j) ≤ 2(M − 2)R+ 3R+ 2Rhn.
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and

S
η̂jn(t)

⊂ SẐn ∪ SŜn(t) ⊂
{
i ∈ X

∣∣ d(i, j) ≤ 2Rhn
}
∪
{
i ∈ X

∣∣ 2R(hn−M) +R < d(i, j) ≤ 2R(hn+M)−R
}

⊂
{
i ∈ X

∣∣ d(i, j) ≤ 2R(hn+M)−R
}
.

(99)

As R̂1(0) = id and R̂(1)
1 (0) = 0, we have

|g2(t)| ≤ x
∥∥ei(X̂−ẑ1)tR̂1(t)− id− i(X − ẑ1)t

∥∥
= x

∥∥∫ t

0
ds
(
i(X̂ − ẑ1)ei(X̂−ẑ1)sR̂1(s) + ei(X̂−ẑ1)sR̂

(1)
1 (s)− i(X − ẑ1)

)∥∥
= x

∥∥∫ t

0
ds

∫ s

0
du
(
−(X̂ − ẑ1)2ei(X̂−ẑ1)uR̂1(u) + 2i(X̂ − ẑ1)ei(X̂−ẑ1)uR̂

(1)
1 (u) + ei(X̂−ẑ1)uR̂

(2)
1 (u)

)∥∥
≤ x

∫ t

0
ds

∫ s

0
du
(
‖Ẑ1‖2‖R̂1(u)‖+ 2‖Ẑ1‖‖R̂(1)

1 (u)‖+ ‖R̂(2)
1 (u)‖

)
≤ x

∫ t

0
ds

∫ s

0
du
((1

2

√
β1/2h

D+1
2

)2
‖R̂1(u)‖+

√
β1/2h

D+1
2 ‖R̂(1)

1 (u)‖+ ‖R̂(2)
1 (u)‖

)
,

(100)

i.e., Eq. (92) implies that for 2t
√
β1/2 = 4txcD(2R)D

σ h
D−1
2 ≤ 1/2, we have

|g2(t)| ≤ xt2β1

2

(1

4
hD+1 + 4h

D+1
2 + 32

)
≤ 145

324
x
(
9
√
β1/2h

D+1
2 t
)2
. (101)

Further, for 2t
√
βn/2 ≤ 1/2, Eq. (92) implies

‖ξ̂n(t)‖ =
∥∥ei(ẑn−1−ẑn)tR̂n(t)− id

∥∥ ≤ ∫ t

0
ds
(
‖ẑn−1 − ẑn‖‖R̂n(s)‖+ ‖R̂(1)

n (s)‖
)

≤ 2‖ẑn−1 − ẑn‖t+ 8
√
βn/2t,

(102)

where

‖ẑn−1 − ẑn‖ =

{
‖Ẑ1‖ if n = 1,

‖Ẑn−1 − Ẑn‖ if n > 1,

≤ x

σ
×

{
cD(2Rh)D if n = 1,∑

i∈X :2Rh(n−1)<d(i,j)≤2Rhn 1 if n > 1,

≤ x

σ
×

{
cD(2Rh)D if n = 1,

cD(2Rhn)D−12Rh if n > 1,

=
1

2

2xcD(2R)D

σ
(hn)D−1h =

1

2

√
βn/2(hn)

D−1
2 h

(103)

i.e.,

‖ξ̂n(t)‖ ≤
√
βn/2(hn)

D−1
2 ht+ 8

√
βn/2t =

√
β1/2n

D−1
2 t
(

(hn)
D−1
2 h+ 8

)
≤ 9
√
β1/2h

D+1
2 nD−1t

(104)

and thus

‖Ξ̂n(t)‖ ≤
(
9
√
β1/2h

D+1
2 t
)n

(n!)D−1. (105)
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Now,

|h3(t)| ≤ x‖Ξ̂k(t)‖+ x

k−1∑
n=0

‖Ξ̂n(t)‖‖r̂n(t)‖+ x

k∑
n=2

‖Ξ̂n−1(t)‖‖ŝn(t)‖

≤ x‖Ξ̂k(t)‖+ x
k∑

n=1

‖Ξ̂n−1(t)‖‖ẐR,n(t)− R̂n(t)‖+ x
k∑

n=2

‖Ξ̂n−1(t)‖‖ẐS,n(t)− Ŝn(t)‖,

(106)

i.e., Eq. (92) implies that for 2t
√
βn/2 ≤ 1/2, we have

|h3(t)| ≤ x‖Ξ̂k(t)‖+ 2x

k∑
n=1

‖Ξ̂n−1(t)‖τM+1
n + 2x

k∑
n=2

‖Ξ̂n−1(t)‖τM+1
n

= x‖Ξ̂k(t)‖+ 2xτM+1
1 + 4x

k∑
n=2

‖Ξ̂n−1(t)‖τM+1
n

≤ x
(

9
2τ1h

D+1
2
)k

(k!)D−1 + 2xτM+1
1 + 4x

k−1∑
n=1

(
9
2τ1h

D+1
2
)n

(n!)D−1τM+1
n+1

= 2xτM+1
1 + x

(
9
2τ1h

D+1
2
)((

9
2τ1h

D+1
2
)k−1

(k!)D−1 + 4

k−2∑
n=0

(
9
2τ1h

D+1
2
)n

((n+ 1)!)D−1τM+1
n+2

)

≤ 2xτM+1
1 + x

(
9
2τ1h

D+1
2
)(

2D−1
(

9
2τ1h

D+1
2
)(

9
2τ1h

D+1
2 kD−1

)k−2
+ 4

k−2∑
n=0

(
9
2τ1h

D+1
2 kD−1

)n
τM+1
n+2

)
,

(107)

for which we have (we recall that τk = 4txcD(2R)D

σ (hk)
D−1
2 = τ1k

D−1
2 )

|h3(t)| ≤ 2xτM+1
1 + x

(
9
2τ1h

D+1
2
)(

2D−1
(

9
2τ1h

D+1
2
) 1

2k−2
+ 8τM+1

k

)
= x

(
9
2τ1h

D+1
2
)2(

2D+1 1

2k
+

8

81
(τkk

−D−1
2 )M−1h−(D+1) +

16

9
τMk h−

D+1
2 k

D−1
2

)
≤ x

(
9
2τ1h

D+1
2
)2(

2D+1 1

2k
+

24

81
τM−1
k h−(D+1)

)
≤ x

(
9
2τ1h

D+1
2
)2(

2D+1 1

2k
+

24

81

(
1
9h
−D+1

2 k−
D−1
2
)M−1

h−(D+1)

)
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if 9
2τkh

D+1
2 k

D−1
2 ≤ 1/2.

Eq. (92) further implies that for 2t
√
βn/2 ≤ 1/2

‖η̂2(t)‖ = ‖Ŝ2(t)e−iẐ2t − id‖ ≤
∫ t

0
ds
(
‖Ŝ(1)

2 (s)‖+ ‖Ŝ2(s)‖‖Ẑ2‖
)

≤
(
8
√
β2/2 +

2cDx(4Rh)D

σ

)
t

=
(
8 + (2h)

D+1
2
)√

β2/2t ≤ 5(2h)
D+1
2

√
β2/2t,

(109)
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i.e.,

|g2(t) + g3(t)| ≤ |g2(t)|+ x‖ξ̂1(t)‖‖η̂2(t)‖+ x

k∑
n=3

‖Ξ̂n−1(t)‖‖Ŝn(t)‖

≤ |g2(t)|+ 45

81
2Dx

(
9
√
β1/2h

D+1
2 t
)2

+ 2x
k−1∑
n=2

(
9
√
β1/2h

D+1
2 t
)n

(n!)D−1

≤ x
(

145

324
+

45

81
2D
)(

9
√
β1/2h

D+1
2 t
)2

+ 2x
(
9
√
β1/2h

D+1
2 t
)2 k−3∑

n=0

(
9
√
β1/2h

D+1
2 t
)n

((n+ 2)!)D−1

= x

(
145

324
+

14

9
2D
)(

9
√
β1/2h

D+1
2 t
)2

+ 2x
(
9
√
β1/2h

D+1
2 t
)2 k−3∑

n=1

(
9
√
β1/2h

D+1
2 t
)n

((n+ 2)!)D−1

≤ x
(

145

324
+

14

9
2D
)(

9
√
β1/2h

D+1
2 t
)2

+ 2 · 6D−1x
(
9
√
β1/2h

D+1
2 t
)2 k−3∑

n=1

(
9
√
βn/2h

D+1
2 n

D−1
2 t
)n
,
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for which we have

|g2(t) + g3(t)| ≤ x
(

145

324
+

14

9
2D + 4 · 6D−1

)(
9
2τ1h

D+1
2
)2 (111)

if 9
2τkh

D+1
2 k

D−1
2 ≤ 1/2.

ut

B. Bound on |g1(t)|

We have

|g1(t)| ≤ t

σ

∑
i∈X

d(i,j)>2Rh

∣∣〈X̂jX̂i〉 − 〈X̂j〉〈X̂i〉
∣∣,

(112)

where for l ∈ SX̂j we have d(l, j) ≤ R and for k ∈ SX̂i we have d(k, i) ≤ R, i.e., 2Rh < d(i, j) ≤
d(i, k) + d(k, l) + d(l, j) ≤ 2R + d(k, l), i.e., d(SX̂j ,SX̂i) ≥ d(i, j) − 2R > 2R(h − 1). Hence, for
2R(h− 1) ≥ l0

|g1(t)| ≤ x2t

σ

∑
i∈X

d(i,j)>2Rh

f(d(i, j)− 2R) ≤ cDx
2t

σ

∞∑
l=2Rh+1

f(l − 2R)lD−1. (113)

C. Bound on |h1(t)|

We have

|h1(t)| ≤
∣∣〈X̂je

iẑ1t〉 − 〈X̂j〉〈eiẑ1t〉
∣∣+

k∑
n=2

∣∣〈X̂jΞ̂n−1(t)eiẑnt〉 − 〈X̂jΞ̂n−1(t)〉〈eiẑnt〉
∣∣, (114)
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where, as 〈X̂j〉 = 0,

∣∣〈X̂je
iẑ1t〉 − 〈X̂j〉〈eiẑ1t〉

∣∣ ≤ ∫ t

0
ds
∣∣〈X̂j ẑ1eiẑ1t〉 − 〈X̂j〉〈ẑ1eiẑ1t〉

∣∣
≤ 1

σ

∑
i∈X

d(i,j)>2Rh

∫ t

0
ds
∣∣〈X̂jX̂ie

iẑ1t〉 − 〈X̂j〉〈X̂ie
iẑ1t〉

∣∣, (115)

i.e., analogous to Section IV B, we have for 2R(h− 1) ≥ l0 that

∣∣〈X̂je
iẑ1t〉 − 〈X̂j〉〈eiẑ1t〉

∣∣ ≤ cDx
2t

σ

∞∑
l=2Rh+1

f(l − 2R)lD−1. (116)

Now,

Sẑn ⊂
{
i ∈ X

∣∣ d(i, j) > 2Rhn−R
}
, (117)

which, together with Lemma 11, implies that d(Sẑn ,SΞ̂n−1(t)) > 2R(h −M). Hence, for 2R(h −
M) ≥ l0, we have

|h1(t)| ≤ cDx
2t

σ

∞∑
l=2Rh+1

f(l − 2R)lD−1 + xf(2R(h−M) + 1)

k−1∑
n=1

‖Ξ̂n(t)‖, (118)

where, again due to Lemma 11, for τn ≤ 1/2

k−1∑
n=1

‖Ξ̂n(t)‖ ≤
k−1∑
n=1

(
9
2h

D+1
2 τ1

)n
(n!)D−1

≤
(

9
2h

D+1
2 τ1

) k−2∑
n=0

(
9
2h

D+1
2 kD−1τ1

)n
,

(119)

i.e., for 9
2h

D+1
2 k

D−1
2 τk ≤ 1/2

|h1(t)| ≤ cDx
2t

σ

∞∑
l=2Rh+1

f(l − 2R)lD−1 + 2xf(2R(h−M) + 1)
(

9
2h

D+1
2 τ1

)
. (120)

D. Bound on |h2(t)|

We recall that Ξ̂n−1(t) and η̂n(t) depend on j, which we denote by a superscript. Employing
the Cauchy-Schwarz inequality, we find∣∣∣∑
j∈X

〈
X̂jΞ̂

j
n−1(t)

〉〈(
η̂jn(t)− 〈η̂jn(t)〉

)
eiX̂ t〉∣∣∣2 =

∣∣∣〈∑
j∈X

〈
X̂jΞ̂

j
n−1(t)

〉(
η̂jn(t)− 〈η̂jn(t)〉

)
eiX̂ t

〉∣∣∣2
≤
〈(∑

j∈X

〈
X̂jΞ̂

j
n−1(t)

〉(
η̂jn(t)− 〈η̂jn(t)〉

))(∑
j∈X

〈
X̂jΞ̂

j
n−1(t)

〉(
η̂jn(t)− 〈η̂jn(t)〉

))†〉
≤ x2

∑
i,j∈X

‖Ξ̂in−1(t)‖‖Ξ̂jn−1(t)‖
(
〈η̂in(t)(η̂jn(t))†〉 − 〈η̂in(t)〉〈(η̂jn(t))†〉

)
.

(121)
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Lemma 11 implies d(S
η̂jn(t)

,Sη̂in(t)) ≥ d(i, j)− 4R(hn+M) + 2R =: d(i, j)− rn, and therefore (we

use |〈η̂in(t)(η̂jn(t))†〉 − 〈η̂in(t)〉〈(η̂jn(t))†〉| ≤ ‖η̂in(t)‖‖η̂jn(t)‖)∣∣∣∑
j∈X

〈
X̂jΞ̂

j
n−1(t)

〉〈(
η̂jn(t)− 〈η̂jn(t)〉

)
eiX̂ t〉∣∣∣2 ≤ x2

∑
i,j∈X

d(i,j)≤rn+l0

‖Ξ̂in−1(t)‖‖Ξ̂jn−1(t)‖‖η̂in(t)‖‖η̂jn(t)‖

+ x2
∑
i,j∈X

d(i,j)>rn+l0

‖Ξ̂in−1(t)‖‖Ξ̂jn−1(t)‖‖η̂in(t)‖‖η̂jn(t)‖f(d(i, j)− rn)

≤ cDx2|X |
(

(rn + l0)D +
∞∑

l=rn+l0+1

f(l − rn)lD−1
)

× max
i,j∈X

‖Ξ̂in−1(t)‖‖Ξ̂jn−1(t)‖‖η̂in(t)‖‖η̂jn(t)‖

=: (crn [f ])2 max
i,j∈X

‖Ξ̂in−1(t)‖‖Ξ̂jn−1(t)‖‖η̂in(t)‖‖η̂jn(t)‖,

(122)

where for τn ≤ 1/2, again using Lemma 11,√
‖Ξ̂in−1(t)‖‖Ξ̂jn−1(t)‖‖η̂in(t)‖‖η̂jn(t)‖ ≤

(
9
2h

D+1
2 τ1

)n−1
((n− 1)!)D−1

√
‖η̂in(t)‖‖η̂jn(t)‖

≤
(

9
2h

D+1
2 τ1

)n−1
((n− 1)!)D−1 ×

{
5 · 2D−1h

D+1
2 τ1 for n = 2,

3 for n > 2,

(123)

i.e.,

∣∣∣∑
j∈X

hj2(t)
∣∣∣ ≤ 45 · 2D−2cr2 [f ]hD+1τ2

1 + 3
k−1∑
n=2

crn+1 [f ]
(

9
2h

D+1
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)n
(n!)D−1
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(
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27
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)n
((n+ 2)!)D−1

)(
9
2h
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)2
≤ 12 · 2D−3

(
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27
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k−3∑
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crn+3 [f ]
(

9
2τkh
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2 k

D−1
2
)n)(9

2h
D+1
2 τ1

)2
,

(124)

where for 2R(h−M) ≥ l0 and n ≥ 2

(crn [f ])2 = cDx
2|X |

(
(rn + l0)D +

∞∑
l=1

f(l + l0)(l + rn + l0)D−1
)

≤ cDx2|X |(rn + l0)D
(

1 +

∞∑
l=1

f(l + l0)(l + 1)D−1
)

≤ cDx2|X |(6R)D(hn)D
(

1 +
∞∑
l=1

f(l + l0)(l + 1)D−1
)
,

(125)
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i.e.,∣∣∣∑
j∈X

hj2(t)
∣∣∣ ≤ 12 · 2D−3c

1/2
D x(6R)D/2

(
1 +

∞∑
l=1

f(l + l0)(l + 1)D−1
)1/2

×

(
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27
2D/2 +
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(n+ 3)D/2
(

9
2τkh

D+1
2 k

D−1
2
)n)(9

2h
D+1
2 τ1

)2|X |1/2hD/2,
(126)

which we combine with the bound on |h3(t)| in Lemma 11 to find that for 9
2τkh

D+1
2 k

D−1
2 ≤ 1/2

∣∣∣∑
j∈X

hj2(t)
∣∣∣+
∣∣∣∑
j∈X

hj3(t)
∣∣∣ ≤ x[CD[f ]

(
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27
2D/2 +

k−3∑
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2n

)
hD/2

|X |1/2

+

(
2D+1 1

2k
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24

81

(
1
9h
−D+1

2 k−
D−1
2
)M−1

h−(D+1)

)]
|X |
(

9
2τ1h

D+1
2
)2

=
[
CD[f ]

(
10

27
2D/2 +

k−3∑
n=0

(n+ 3)D/2

2n

)
hD/2

|X |1/2

+

(
2D+1 1

2k
+

24

81

1(
9h

D+1
2 k

D−1
2

)M−1
hD+1

)] |X |3/2x3

σ2
(18cD2D

)2
R2D h2D

|X |1/2
t2,

(127)

where

CD[f ] = 3 · 2D−1c
1/2
D (6R)D/2

√√√√1 +
∞∑
l=1

f(l + l0)(l + 1)D−1. (128)

E. Final steps

We denote by C > 0 a constant, not always the same, that depends only on D. Further, we
write S = σ

x|X |1/2 . Combining Eqs. (81) and (83) and the bounds obtained in the previous sections,
we have

ϕ(1)(t) =
(
−t+ g(t)

)
ϕ(t) + h(t), ϕ(0) = 1, (129)

where, letting k, h,M ∈ N, k,M ≥ 2, 2R(h−M) ≥ l0, and

t ≤ CS

RD
|X |1/2

hDkD−1
=: T1 (130)

the functions g and h are bounded by

|g(t)| ≤ c1t+ c2t
2,

|h(t)| ≤ c3t+ c4t
2,

(131)
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where

c1 =
C

S2

∞∑
l=2Rh+1

f(l − 2R)lD−1,

c3 = c1 +
CRD

S2
f(2R(h−M) + 1)hD =: c1 + c5,

c2 =
CR2D

S3

h2D

|X |1/2
,

c4 = CC[f ]
S3

R2D

1

h3D/2
c2

2 +
( 1

2k
+

1(
9h

D+1
2 k

D−1
2

)M−1
hD+1

)
c2 =: CC[f ]

S3

R2D

1

h3D/2
c2

2 + c6 ≤ CC[f ]
S3

R2D
c2

2 + c6,

C[f ] = RD/2
(

1 +
∞∑
l=1

f(l + l0)(l + 1)D−1
)1/2

.

(132)

Now let c1 < 1/2 and

t ≤ 1

4c2
=
CS3

R2D

|X |1/2

h2D
=: T2. (133)

Then the solution to Eq. (129) with functions g and h bounded as above fulfils (see Appendix B)

|ϕ(t)− e−t
2/2| ≤

(c1

2
+
c2

3
t
)
t2e−t

2/6 + 4(1− e−
t2

4 )(c3 + c4t), (134)

i.e., for

1 < T := min{T1, T2} (135)

we have, using Esseen’s inequality [1],

∆ ≤ C 1

T
+ C

∫ T

0
dt
|ϕ(t)− e−t

2/2|
t

≤ C 1

min{T1, T2}
+ C

∫ ∞
0

dt (c1 + c2t) te
−t2/6 + Cc3

∫ 1

0
dt

1− e−
t2

4

t
+

∫ T

1
dt

1

t

+ Cc4T

≤ C max

{
1

T1
,

1

T2

}
+ C (c1 + c2) + Cc3 (1 + log(T )) + C

C[f ]S3

R2D
c2

2T + Cc6T

≤ C
(

max

{
1

c2T1
, 1

}
+
C[f ]S3

R2D

)
c2 + Cc3 max{1, log(min{T1, T2})}+ C

c6

c2
,

(136)

which also holds for c1 ≥ 1/2 and 0 < T ≤ 1 as, trivially, ∆ ≤ 2.

We bound

c6 ≤ C
( 1

2k
+

1(
9h

D+1
2 k

D−1
2

)M−1
hD+1

)
c2 ≤ C

( 1

2k
+ h−M

)
c2. (137)

Now set h = 2M , k = dM log2(M)e, and let log(log(|X |)) > 0 and M ≥ 2 log(|X |)
log(log(|X |)) ≥ max{2, l02R}.

Then all the assumptions on k, h,M are fulfilled and we have 2 ≤ αM log2(M) ≤ k ≤
M log2(M) + 1 ≤ 2M log2(M) and

c6 ≤ CM−Mc2 ≤ Cc2 exp

(
− 2 log(|X |)

log(log(|X |))
log

(
2 log(|X |)

log(log(|X |))

))
≤ Cc2|X |−1. (138)
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and

c2T1 =
CRD

S2

MD

kD−1
≥ CRD

S2

M

[log2(M)]D−1
≥ CRD

S2
. (139)

Hence, writing s = S/RD/2, c[f ] = C[f ]/RD/2,

∆ ≤ C
(
max

{
s2, 1

}
+ c[f ]s3

) RD/2
s3

M2D

|X |1/2
+ C|X |−1 + Cc3 max
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1
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, s

}
|X |1/2.

(140)

1. Exponential decay

Now let f(l) ≤ e−l/ξ with ξ > 0. Then

Cs2c3 =
1

RD
e2R/ξ

∞∑
l=1

e−(l+4RM)/ξ(l + 4RM)D−1 + e−(2RM+1)/ξMD

=
1

RD
e2R/ξξD−1

∞∑
l=1

∫ l

l−1
dx e−(l+4RM)/ξ[(l + 4RM)/ξ]D−1 + e−(2RM+1)/ξMD,

(141)

i.e., for D ≤ 1 + 4RM/ξ,

Cs2c3 ≤
1

RD
e2R/ξξD

∫ ∞
4RM/ξ

dx e−xxD−1 + e−(2RM+1)/ξMD

≤ 1

RD
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e−1/ξ ξ

D

RD
e−RM/ξ.

(142)

Now set M = dDξ log(|X |)/R + 2 log(|X |)
log(log(|X |))e (and recall that we assumed log(log(|X |)) > 0

and 2 log(|X |)
log(log(|X |)) ≥ max{2, l02R}, both of which are implied by log(|X |) > max{1, ( l04R)5/3}). Then

4RM/ξ + 1 ≥ 4D log(|X |) > D, i.e., the above assumption is fulfilled and we have

∆ ≤ C
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Appendix A: The first step

Omitting the argument, we write Ξ̂n = Ξ̂n(t), ξ̂n = ξ̂n(t), η̂n = η̂n(t), Ŝn = Ŝn(t), and R̂n =
R̂n(t) throughout this section. For k ∈ N, k ≥ 2, we have

eiX̂ t = (eiX̂ te−iẑ1t − id)eiẑ1t + eiẑ1t

= (eiX̂ te−iẑ1t − ei(X̂−ẑ1)tR̂1)eiẑ1t + (ei(X̂−ẑ1)tR̂1 − id)eiẑ1t + eiẑ1t

= eiẑ1t +

k∑
n=2

Ξ̂n−1eiẑnt + (eiX̂ te−iẑ1t − ei(X̂−ẑ1)tR̂1)eiẑ1t + ξ̂1eiẑ1t −
k∑

n=2

Ξ̂n−1eiẑnt.

(A1)
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For n ∈ N, 1 ≤ n ≤ k − 1, denote

Ŷn = Ξ̂neiẑnt −
k∑

m=n+1

Ξ̂m−1eiẑmt. (A2)

Then

eiX̂ t = eiẑ1t +

k∑
n=2

Ξ̂n−1eiẑnt + (eiX̂ te−iẑ1t − ei(X̂−ẑ1)tR̂1)eiẑ1t + Ŷ1. (A3)

We have

Ŷn = Ξ̂neiẑnt − Ξ̂neiẑn+1t −
k∑

m=n+2

Ξ̂m−1eiẑmt

= Ŷn+1 + Ξ̂neiẑnt − Ξ̂neiẑn+1t − Ξ̂n+1eiẑn+1t

= Ŷn+1 + Ξ̂n

(
eiẑnte−iẑn+1t − ei(ẑn−ẑn+1)R̂n+1

)
eiẑn+1t

=: Ŷn+1 + ∆̂n

(A4)

for 1 ≤ n ≤ k − 2 and, letting ∆̂k−1 = Ξ̂k−1

(
eiẑk−1te−iẑkt − ei(ẑk−1−ẑk)R̂k

)
eiẑkt,

Ŷk−1 = Ξ̂k−1eiẑk−1t − Ξ̂k−1eiẑkt

= Ξ̂k−1

(
eiẑk−1te−iẑkt − id

)
eiẑkt − ∆̂k−1 + ∆̂k−1

= Ξ̂k−1

(
ei(ẑk−1+ẑk)R̂k − id

)
eiẑkt + ∆̂k−1

= Ξ̂ke
iẑkt + ∆̂k−1.

(A5)

Hence,

Ŷ1 = Ξ̂ke
iẑkt +

k−1∑
n=1

∆̂n (A6)

and therefore, writing ∆̂0 = (eiX̂ te−iẑ1t − ei(X̂−ẑ1)tR̂1)eiẑ1t,

eiX̂ t = eiẑ1t +
k∑

n=2

Ξ̂n−1eiẑnt + Ξ̂ke
iẑkt +

k−1∑
n=0

∆̂n. (A7)

Now, for n ≥ 1

〈eiẑnt〉 = 〈ei(X̂−Ẑn)t〉 = 〈ei(X̂−Ẑn)t〉 − 〈Ŝne−iẐnteiX̂ t〉+ 〈Ŝne−iẐnteiX̂ t〉, (A8)

where

〈Ŝne−iẐnteiX̂ t〉 = 〈(η̂n + id)eiX̂ t〉 = 〈(η̂n + id)eiX̂ t〉 − 〈(η̂n + id)〉ϕ(t) + 〈(η̂n + id)〉ϕ(t)

= 〈(η̂n − 〈η̂n〉)eiX̂ t〉+ 〈(η̂n + id)〉ϕ(t).
(A9)
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Hence,

k∑
n=2

〈
X̂jΞ̂n−1

〉〈(
η̂n − 〈η̂n〉

)
eiX̂ t〉 =

k∑
n=2

〈
X̂jΞ̂n−1

〉
〈eiẑnt〉 −

k∑
n=2

〈
X̂jΞ̂n−1

〉
〈(η̂n + id)〉ϕ(t)

+
k∑

n=2

〈
X̂jΞ̂n−1

〉 (
〈Ŝne−iẐnteiX̂ t〉 − 〈ei(X̂−Ẑn)t〉

) (A10)

and therefore, using that 〈X̂j〉 = 0,

〈X̂je
iX̂ t〉 = i〈X̂jX〉ϕ(t)t− i

(
〈X̂j ẑ1〉 − 〈X̂j〉〈ẑ1〉

)
ϕ(t)t

+
(〈
X̂j ξ̂1(t)

〉
+ i〈X̂j ẑ1〉t− i〈X̂jX〉t

)
ϕ(t)

+
〈
X̂j ξ̂1(t)

〉
〈η̂2(t)〉ϕ(t) +

k∑
n=3

〈
X̂jΞ̂n−1(t)

〉
〈(η̂n(t) + id)〉ϕ(t)

+
k∑

n=1

(
〈X̂jΞ̂n−1(t)eiẑnt〉 − 〈X̂jΞ̂n−1(t)〉〈eiẑnt〉

)
+

k∑
n=2

〈
X̂jΞ̂n−1(t)

〉〈(
η̂n(t)− 〈η̂n(t)〉

)
eiX̂ t〉+ 〈X̂jΞ̂k(t)e

iẑkt〉

+

k−1∑
n=0

〈X̂j∆̂n(t)〉 −
k∑

n=2

〈
X̂jΞ̂n−1(t)

〉 (
〈Ŝn(t)e−iẐnteiX̂ t〉 − 〈ei(X̂−Ẑn)t〉

)
,

(A11)

where for n ∈ N, 0 ≤ n ≤ k − 1,

∆̂n(t) = Ξ̂n(t)
(

eiẑnte−iẑn+1t − ei(ẑn−ẑn+1)R̂n+1(t)
)

eiẑn+1t. (A12)

Appendix B: The differential equation and the bound on its solution

The solution of

dϕ

dt
(t) = −tϕ(t) + g(t)ϕ(t) + h(t), ϕ(0) = 1, (B1)

is given by

ϕ(t) = e−a(t)
(

1 +

∫ t

0
ds h(s)ea(s)

)
, a(t) =

∫ t

0
ds (s− g(s)) = t2/2−

∫ t

0
ds g(s) (B2)

and fulfils

|ϕ(t)− e−t
2/2| = e−t

2/2
∣∣∣e∫ t0 ds g(s) + e

∫ t
0 ds g(s)

∫ t

0
ds h(s)es

2/2−
∫ s
0 du g(u) − 1

∣∣∣
≤ e−t

2/2
∣∣e∫ t0 ds g(s) − 1

∣∣+ e−t
2/2
∣∣∣e∫ t0 ds g(s)

∫ t

0
ds h(s)es

2/2−
∫ s
0 du g(u)

∣∣∣
≤ e−t

2/2e
∫ t
0 ds |g(s)|

∫ t

0
ds |g(s)|+ e−t

2/2

∫ t

0
ds |h(s)|es2/2+

∫ t
s du |g(u)|.

(B3)
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If |g(u)| ≤ c1u+ c2u
2 with c1,2 ≥ 0, we find∫ t

0
ds |h(s)|es2/2+

∫ t
s du |g(u)| ≤ ec1t

2/2+c2t3/3

∫ t

0
ds |h(s)|e(1−c1)s2/4+(1−c1)s2/4−c2s3/3, (B4)

where, for 2c2s ≤ 1−c1, the function (1−c1)s2/4−c2s
3/3 is non-decreasing in s, i.e., for 2c2t ≤ 1−c1

and 1 > c1

e−t
2/2

∫ t

0
ds |h(s)|es2/2+

∫ t
s du |g(u)| ≤ e−(1−c1)t2/4

∫ t

0
ds |h(s)|e(1−c1)s2/4

=
2

1− c1
e−(1−c1)t2/4

∫ t

0
ds
|h(s)|
s

d

ds
e(1−c1)s2/4

≤ 2

1− c1
e−(1−c1)t2/4

∫ t

0
ds

d

ds
e(1−c1)s2/4 max

s∈[0,t]

|h(s)|
s

=
2

1− c1
(1− e−

1−c1
4

t2) max
s∈[0,t]

|h(s)|
s

.

(B5)

Hence, for |g(t)| ≤ c1t+ c2t
2 with c2 ≥ 0 and 0 ≤ c1 < 1/2 and t such that 2c2t ≤ 1− c1, we have

|ϕ(t)− e−t
2/2| ≤ c1

2
e−(1−c1)t2/3t2 +

c2

3
e−(1−c1)t2/3t3 +

2

1− c1
(1− e−

1−c1
4

t2) max
s∈[0,t]

|h(s)|
s

≤ c1

2
e−t

2/6t2 +
c2

3
e−t

2/6t3 + 4(1− e−
t2

4 ) max
s∈[0,t]

|h(s)|
s

.

(B6)

Appendix C: Proof of Lemma 10

We start by bounding the support (Section C 2) and the operator norm (Section C 3) of Ẑ(n)(0).
We do so by expressing it in terms of nested commutators in the following section. We complete
the proof of Lemma 10 in Section C 4. For operators Â and B̂, we denote

[Â, B̂]n = [Â, [Â, B̂]n−1], [Â, B̂]0 = B̂. (C1)

1. Nested commutator form

We have

Ẑ(1)(t) = −iẐ(t)e−itB̂
(

e−itÂB̂eitÂ − B̂
)

eitB̂ =: −iẐ(t)e−itB̂Ŷ (t)eitB̂ =: −iẐ(t)X̂(t), (C2)

where

X̂(1)(t) = −ie−itB̂[B̂, Ŷ (t)]eitB̂ + e−itB̂Ŷ (1)(t)eitB̂ (C3)

and, for n ∈ N, by induction

X̂(n)(t) =

n∑
k=0

(
n

k

)
(−i)n−ke−itB̂[B̂, Ŷ (k)(t)]n−ke

itB̂. (C4)
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Hence, employing the general product rule, we find for m ∈ N

Ẑ(m+1)(t) = −i
m∑
n=0

(
m

n

)
Ẑ(n)(t)X̂(m−n)(t)

= −i
m∑
n=0

(
m

n

)
Ẑ(n)(t)

m−n∑
k=0

(
m− n
k

)
(−i)m−n−ke−itB̂[B̂, Ŷ (k)(t)]m−n−ke

itB̂

= −i
m∑
n=0

(
m

n

)
Ẑ(n)(t)(−i)m−ne−itB̂[B̂, (e−itÂB̂eitÂ − B̂

)]
m−neitB̂

− i
m−1∑
n=0

(
m

n

)
Ẑ(n)(t)

m−n∑
k=1

(
m− n
k

)
(−i)m−n−ke−itB̂[B̂,−ie−itÂ[Â, B̂]ke

itÂ]m−n−ke
itB̂,

(C5)

i.e., Ẑ(0) = id, Ẑ(1)(0) = 0, and for m ∈ N, m > 0,

Ẑ(m+1)(0) = −
m−1∑
n=0

(
m

n

)
Ẑ(n)(0)

m−n∑
k=1

(
m− n
k

)
(−i)m−n−k[B̂, [Â, B̂]k]m−n−k. (C6)

2. Support

We let C ⊂ X and Ĉ =
∑

i∈C Ŷi. Let Ŝ an operator and denote by Sn the support of [Ĉ, Ŝ]n. Then

[Ĉ, Ŝ]n+1 =
∑
i∈C

[
Ŷi, [Ĉ, Ŝ]n

]
=

∑
i∈C

d(i,Sn)≤R

[
Ŷi, [Ĉ, Ŝ]n

]
,

(C7)

i.e., by induction5

Sn ⊂
{
i ∈ X

∣∣ d(i,S0) ≤ 2nR
}
. (C10)

We thus have

S[B̂,[Â,B̂]k]n−k
⊂
{
i ∈ X

∣∣ d(i,S[Â,B̂]k
) ≤ 2(n− k)R

}
,

S[Â,B̂]k
= S[Â,[Â,B̂]]k−1

⊂
{
i ∈ X

∣∣ d(i,S) ≤ 2(k − 1)R
}
,

(C11)

5 We have

Sn+1 ⊂ Sn
⋃
i∈X

d(i,Sn)≤R

SX̂i
⊂ Sn

⋃
i∈X

d(i,Sn)≤R

{
j ∈ X

∣∣ d(i, j) ≤ R} .
(C8)

Now let (C10) hold. Then d(i,S0) ≤ d(i, s) + d(s,S0) ≤ d(i, s) + 2nR for all s ∈ Sn. Hence, d(i, j) ≤ R and
d(i,Sn) ≤ R imply d(j,S0) ≤ d(j, i) + d(i,S0) ≤ R+ 2nR+ d(i, s), i.e., with the choice d(i,Sn) = d(i, s)

Sn+1 ⊂ Sn
⋃
i∈X

d(i,Sn)≤R

{
j ∈ X

∣∣ d(j,S0) ≤ 2(n+ 1)R
}
=
{
j ∈ X

∣∣ d(j,S0) ≤ 2(n+ 1)R
}
.

(C9)
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which implies

S∑n
k=1[B̂,[Â,B̂]k]n−k

⊂
n⋃
k=1

S[B̂,[Â,B̂]k]n−k

⊂
n⋃
k=1

{
i ∈ X

∣∣ d(i,S[Â,B̂]k
) ≤ 2(n− k)R

}
⊂
{
i ∈ X

∣∣ d(i,S) ≤ 2(n− 1)R
}
.

(C12)

Hence, the support of Ẑ(m+1)(0) is contained in

SẐ(m+1)(0) ⊂
m−1⋃
n=0

SẐ(n)(0) ∪
{
i ∈ X

∣∣ d(i,S) ≤ 2(m− n− 1)R
}

⊂
{
i ∈ X

∣∣ d(i,S) ≤ 2(m− 1)R
}
∪
m−1⋃
n=0

SẐ(n)(0)

⊂ · · · ⊂
{
i ∈ X

∣∣ d(i,S) ≤ 2(m− 1)R
}
.

(C13)
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3. Operator norm

Consider∑
i∈X

[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ]

=
∑
i∈X

d(i,i1)≤2R

[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ] +

∑
i∈X

d(i,i1)>2R

[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ]

=
∑
i∈X

d(i,i1)≤2R

[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ] +

∑
i∈X

d(i,i1)>2R
d(i,i2)≤2R

[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ]

+
∑
i∈X

d(i,i1)>2R
d(i,i2)>2R

[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ]

= · · · =
∑
i∈X

d(i,i1)≤2R

[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ] +

∑
i∈X

d(i,i1)>2R
d(i,i2)≤2R

[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ]

+
∑
i∈X

d(i,i1)>2R
d(i,i2)>2R
d(i,i3)≤2R

[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ] + · · ·+

∑
i∈X

d(i,i1)>2R
d(i,i2)>2R

...
d(i,ik−1)>2R
d(i,ik)≤2R

[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ]

+
∑
i∈X

d(i,i1)>2R
d(i,i2)>2R

...
d(i,ik)>2R

[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ],

(C14)

where the last term is zero, i.e., denoting α = 2ycD(2R)D, we have∑
i∈X

∥∥[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ]

∥∥ ≤ ∑
i∈X

d(i,i1)≤2R

∥∥[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ]

∥∥
+ · · ·+

∑
i∈X

d(i,ik)≤2R

∥∥[Ŷi, [Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ]

∥∥
≤ αk

∥∥[Ŷi1 , [Ŷi2 , [· · · [Ŷik−1
, Ŷik ]] · · · ]

∥∥.
(C15)
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Hence,∥∥[B̂, [Â, B̂]k]n−k
∥∥ ≤ ∑

i1∈X
· · ·

∑
in−k∈X

∥∥[Ŷi1 , [Ŷi2 , [· · · [Ŷin−k , [Â, B̂]k] · · · ]
∥∥

≤
∑
i1∈X
· · ·

∑
in−k∈X

∑
j1∈X

· · ·
∑

jk−1∈X

∑
(i,j)∈C

∥∥[Ŷi1 , [Ŷi2 , [· · · [Ŷin−k , [Ŷj1 , [· · · [Ŷjk−1
, [Ŷi, Ŷj ]] · · · ]

∥∥
≤ αn

∑
i2∈X
· · ·

∑
in−k∈X

∑
j1∈X

· · ·
∑

jk−1∈X

∑
(i,j)∈C

∥∥[Ŷi2 , [· · · [Ŷin−k , [Ŷj1 , [· · · [Ŷjk−1
, [Ŷi, Ŷj ]] · · · ]

∥∥
≤ · · · ≤ αn−1n!

∑
(i,j)∈C

‖[Ŷi, Ŷj ]‖.

(C16)

Thus, for m ∈ N, m > 0,

‖Ẑ(m+1)(0)‖ ≤
m−1∑
n=0

(
m

n

)
‖Ẑ(n)(0)‖

m−n∑
k=1

(
m− n
k

)
‖[B̂, [Â, B̂]k]m−n−k‖

≤ β
m−1∑
n=0

(
m

n

)
‖Ẑ(n)(0)‖

m−n∑
k=1

(
m− n
k

)
αm−n−1(m− n)!

= 2m+1(m+ 1)!αm+1 β

2α2

1

m+ 1

m−1∑
n=0

‖Ẑ(n)(0)‖
2nn!αn

(
1− 2n−m

)
,

(C17)

i.e.,

zm :=
‖Ẑ(m)(0)‖
2mm!αm

≤ max

{
1,

β

2α2

}
1

m

m−2∑
n=0

zn =:
γ

m

m−2∑
n=0

zn, (C18)

for which we have z0 = 1, z1 = 0, and zm ≤ γb
m
2
c by induction.6

4. Final steps

We start by showing that Ẑ(t) =
∑∞

n=0
tn

n! Ẑ
(n)(0). Let ân and b̂n be sequences of operators such

that the limit B̂ =
∑∞

n=0 b̂n exists and such that
∑∞

n=0 ‖ân‖ <∞. Then7

ÂB̂ =

∞∑
n=0

n∑
k=0

âk b̂n−k. (C24)

6 Let m ≥ 2 and zn ≤ γb
n
2
c for n ≤ m− 2. Then

zm ≤
γ

m

m−2∑
n=0

γb
n
2
c ≤ γm− 1

m
γb

m−2
2
c ≤ γb

m
2
c. (C19)

7 This is basically Merten’s theorem on the product of series. It might be obvious for matrices, the proof is the same:
Write

Âm =
m∑
n=0

ân, B̂m =
m∑
n=0

b̂n, Ĉm =
m∑
n=0

n∑
k=0

âk b̂n−k. (C20)

Rearranging terms, one finds

Ĉm =

m∑
n=0

âm−n

n∑
k=0

b̂k =

m∑
n=0

âm−n(B̂n − B̂) + ÂmB̂, (C21)
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Hence,

Ẑ(t) = e−it(Â+B̂)eitÂeitB̂

=
∞∑
n=0

n∑
k=0

k∑
l=0

(−it)l

l!
(Â+ B̂)l

(it)k−l

(k − l)!
Âk−l

(it)n−k

(n− k)!
B̂n−k

=
∞∑
n=0

tn

n!

n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
[−i(Â+ B̂)]l(iÂ)k−l(iB̂)n−k

=:
∞∑
n=0

tn

n!
Ŷn.

(C25)

Now, by the general Leibniz rule, we have

Ẑ(n)(t) =
n∑
k=0

(
n

k

)(
e−it(Â+B̂)eitÂ

)(k) (
eitB̂
)(n−k)

=
n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)(
e−it(Â+B̂)

)(l) (
eitÂ

)(k−l) (
eitB̂
)(n−k)

,

(C26)

i.e., Ŷn = Ẑ(n)(0) and therefore Ẑ(t) =
∑∞

n=0
tn

n! Ẑ
(n)(0). Now let τ = 2tα

√
γ ≤ 1/2. Then, using

the bound derived in the previous section,

∥∥∥Ẑ(t)−
M∑
n=0

tn

n!
Ẑ(n)(0)

∥∥∥ ≤ ∞∑
n=M+1

tn

n!
‖Ẑ(n)(0)‖ ≤

∞∑
n=M+1

τn =
τM+1

1− τ
≤ 2τM+1 (C27)

and for m ≤M

∥∥∥( M∑
n=0

tn

n!
Ẑ(n)(0)

)(m)∥∥∥ ≤ M∑
n=m

tn−m

(n−m)!
‖Ẑ(n)(0)‖ ≤

M∑
n=m

n!

(n−m)!
2nαnγn/2tn−m

= m!(2αγ1/2)m
M∑
n=m

(
n

m

)
τn−m ≤ m!(2αγ1/2)m

1

(1− τ)m+1
≤ 2m!(4αγ1/2)m.

(C28)

i.e.,

‖Ĉm − ÂB̂‖ ≤
m∑
n=0

‖âm−n‖‖B̂n − B̂‖+ ‖Âm − Â‖‖B̂‖. (C22)

Let ε > 0. As
∑∞
n=0 ‖ân‖ < ∞ and limn→∞ ‖B̂n − B̂‖ = 0, there is a N ∈ N such that ‖B̂n − B̂‖ ≤

ε
3
(1 +

∑∞
n=0 ‖ân‖)

−1 for all n ≥ N . Further, as limn→ ‖an‖ = 0, there is a M ∈ N such that ‖an‖ ≤
ε

3N
(1 + max0≤k≤N−1 ‖B̂k − B̂‖)−1 for all n ≥ M . Finally, as limn→∞ ‖Ân − Â‖ = 0, there is a L ∈ N such

that ‖Âm − Â‖ ≤ ε
3
(1 + ‖B̂‖)−1 for all m ≥ L. Hence, for m ≥ max{N +M,L}

‖Ĉm − ÂB̂‖ ≤
N−1∑
n=0

‖âm−n‖‖B̂n − B̂‖+
m∑

n=N

‖âm−n‖‖B̂n − B̂‖+ ‖Âm − Â‖‖B̂‖

≤
ε
∑N−1
n=0 ‖B̂n − B̂‖

3N(1 + max0≤k≤N−1 ‖B̂k − B̂‖)
+
ε
∑m
n=N ‖âm−n‖

3 + 3
∑∞
n=0 ‖ân‖

+
ε‖B̂‖

3(1 + ‖B̂‖)
≤ ε.

(C23)


