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Universal quantum computers have proved difficult to build. As one response, researchers have pro-
posed limited models of quantum computation, which might be easier to realize. Three examples are the
one clean qubit model of Knill and Laflamme [15], the commuting Hamiltonians model of Bremner, Jozsa,
and Shepherd [3], and the boson sampling model of Aaronson and Arkhipov [1]. None of these models
are known or believed to be capable of universal quantum computation (or, depending on modeling details,
even universal classical computation). But all of them can perform certain estimation or sampling tasks for
which no polynomial-time classical algorithm is known.

One obvious way to define a limited model of quantum computation is to restrict the set of allowed
gates. However, almost every gate set is universal [17], and so are most “natural” gate sets. For example,
Controlled-NOT together with any real one-qubit gate that does not square to the identity is universal [21].
As a result, very few nontrivial examples of non-universal gate sets are known. All known non-universal
gate sets on O(1) qubits, such as the Clifford group [8], are efficiently classically simulable, if the input
and measurement outcomes both belong to an appropriately chosen qubit basis1. As a result, it is tempting
to conjecture that there does not exist such an intermediate gate set: or more precisely, that any gate set
on O(1) qubits is either efficiently classical simulable (with appropriate input and output states), or else
universal for quantum computing. Strikingly, this dichotomy conjecture remains open even for the special
case of 1- and 2-qubit gates! We regard proving or disproving the conjecture as an important open problem
for quantum computing theory.

In this paper, we prove a related conjecture in the quantum linear optics model. In quantum optics,
the Hilbert space is not built up as a tensor product of qubits; instead it’s built up as a direct sum of optical
modes. An optical gate is then just a unitary transformation that acts nontrivially onO(1) of the modes, and
as the identity on the rest. Whenever we have a k-mode gate, we assume that we can apply it to any subset
of k modes (in any order), as often as desired. The most common optical gates considered are beamsplitters,
which act on two modes and correspond to a 2× 2 unitary matrix with determinant −1;2 and phaseshifters,
which act on one mode and simply apply a phase eiθ. Note that any unitary transformation acting on the
one-photon Hilbert space automatically gets “lifted,” by homomorphism, to a unitary transformation acting
on the Hilbert space of n photons. Furthermore, every element of the n-photon linear-optical group—that
is, every n-photon unitary transformation achievable using linear optics—arises in this way (see [1], Sec.
III for details). Of course, if n ≥ 2, then there are also n-photon unitaries that cannot be achieved linear-
optically: that is, the n-photon linear-optical group is a proper subgroup of the full unitary group on the
n-photon Hilbert space.

∗MIT. email: adam@csail.mit.edu.

†MIT. email: aaronson@csail.mit.edu.

1But not necessarily otherwise! For instance, suppose that a nonuniversal gate set G is efficiently simulable if inputs and
outputs are in the computational basis. Now conjugate G by a change of qubit basis to obtain a gate set G′. Clearly G′ is
efficiently classically simulable in the new qubit basis. However, it is unclear how to simulate the gates G′ if inputs and outputs are
in the computational basis. Along these lines, there is evidence that Clifford gates [14], permutation gates [13], and even diagonal
gates [3] can be hard to simulate in arbitrary bases.

2Some references use a different convention and assume that beamsplitters have determinant +1 [19]. Note that these two
conventions are equivalent if one assumes that one can permute modes, i.e. apply the matrix

(
0 1
1 0

)
which has determinant −1.
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We call a set of optical gates S universal on m modes if it generates a dense subset of either SU(m)
(in the complex case) or SO(m) (in the real case). To clarify, if S is universal, this does not mean that
linear optics with S is universal for quantum computing! It only means that S densely generates the one-
photon linear-optical group—or equivalently, the n-photon linear-optical group for any value of n. The
latter kind of universality is certainly relevant for quantum computation: first, it already suffices for the
boson sampling proposal of Aaronson and Arkhipov [1]; and second, if the single resource of adaptive
measurements is added, then universal linear optics becomes enough for universal quantum computation,
by the famous result of Knill, Laflamme, and Milburn (KLM) [16]. On the other hand, if we wanted to
map a k-qubit Hilbert space directly onto an m-mode linear-optical Hilbert space, then as observed by Cerf,
Adami and Kwiat [5], we would need m ≥ 2k just for dimension-counting reasons.

Previously, Reck et al. [20] showed that the set of all phaseshifters and all beamsplitters is universal for
linear optics, on any number of modes. Therefore it is natural to ask: is there any S set of beamsplitters
and phaseshifters that generates a nontrivial set of linear-optical transformations, yet that still falls short of
generating all of them? Here by “nontrivial,” we simply mean that S does something more than permuting
the modes around or adding phases to them.

If such a set S existed, we could then ask the further question of whether the n-photon subgroup gener-
ated by S was

(a) efficiently simulable using a classical computer, despite being nontrivial (much like the Clifford group
for qubits),

(b) already sufficient for applications such as boson sampling and KLM, despite not being the full n-
photon linear-optical group, or

(c) of “intermediate” status, neither sufficient for boson sampling and KLM nor efficiently simulable
classically.

The implications for our dichotomy conjecture would of course depend on the answer to that further
question.

In this paper, however, we show that the further question never even arises, since no such set S exists.
Indeed, any beamsplitter that acts nontrivially on two modes is universal on three or more modes. More
formally, we show

Theorem 1. Let b be any nontrivial beamsplitter. Then when acting on pairs of photons on three modes, b
densely generates either all SO(3) matrices (if all entries of b are real) or all SU(3) matrices (if any entry
of b is non-real).

Together with the Solovay-Kitaev theorem [6], this implies we can use any nontrivial beamsplitter b to
efficiently simulate any other beamsplitter b′. So by Reck et al. [20] we have the following corollary:

Corollary 2. Any nontrivial beamsplitter is universal on m ≥ 3 modes.

What makes this result surprising is that universality holds even if the beamsplitter angles are all rational
multiples of π. A priori, one might guess that by restricting the beamsplitter angles to (say) π/4, one could
produce a linear-optical analogue of the Clifford group; but our result shows that one cannot.

Our proof uses makes heavy use of representation theory. More specifically, suppose we have a beam-
splitter b which acts nontrivially on two modes. We consider the set of three-by-three matrices M densely
generated by applying b to pairs of modes in a 3-mode system. We first show using standard representa-
tion theory that the matrices M form an irreducible representation of a subgroup of SU(3). We then use
the classification of finite subgroups of SU(3) and their representations [7, 11, 9] to show that the set M
cannot represent any finite group. Interestingly the classification of SU(3) subgroups from 1964 [7] con-
tains errors [18], and proving that S is infinite requires use of the corrected classification which was only
completed in 2014 [9, 10]. Once we establish that S is infinite, we use the representation theory of Lie
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subgroups of SU(3) to complete the proof of universality [4]. We refer the interested reader to our full
version (arXiv:1310.6718) for details.

From an experimental perspective, our result shows that any complex nontrivial beamsplitter suffices to
create any desired optical network. From a computational complexity perspective, it implies a dichotomy
theorem for optical gate sets: any set of beamsplitters or phaseshifters generates a set of operations that
is either trivially classically simulable (even on n-photon input states), or else universal for quantum lin-
ear optics. In particular, any nontrivial beamsplitter can be used to perform boson sampling; there is no
way to define an “intermediate” model of boson sampling3 by restricting the allowed beamsplitters and
phaseshifters.

Note that our result holds only for beamsplitters, i.e., optical gates that act on two modes and have
determinant −1. We leave as an open problem whether our result can be extended to arbitrary two-mode
gates, or to gates that act on k ≥ 3 modes. Such a result would complete the linear-optical analogue
of the dichotomy conjecture for standard quantum circuits. The case k = 3 seems doable because the
representations of all exceptional finite subgroups of SU(4) are known [12]. But already the case k =
4 seems more difficult, because the representations of all finite subgroups of SU(5) have not yet been
classified. Thus, a proof for arbitrary k would probably require more advanced techniques in representation
theory.

Our work is the first that we know of to explore limiting the power of quantum linear optics by limiting
the gate set. Previous work has considered varying the available input states and measurements. For
example, as mentioned earlier, Knill, Laflamme, and Milburn [16] showed that linear optics with adaptive
measurements is universal for quantum computation. Restricting to nonadaptive measurements seems to
reduce the computational power of linear optics, but Aaronson and Arkhipov [1] gave evidence that the
resulting model is still impossible to simulate efficiently using a classical computer. If Gaussian states are
used as inputs and measurements are taken in the Gaussian basis only, then the model is efficiently simulable
classically [2]; but with Gaussian-state inputs and photon-number measurements, there is recent evidence
for computational hardness.4

We hope that this work will serve as a first step toward proving the dichotomy conjecture for qubit-based
quantum circuits (i.e., the conjecture that every set of gates is either universal for quantum computation or
else efficiently classically simulable). The tensor product structure of qubits gives rise to a much more
complicated problem than the direct sum structure of linear optics. For that reason, one might expect the
linear-optical “model case” to be easier to tackle first, and the present work confirms that expectation.
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