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Entanglement between two quantum systems is a non-classical correlation between them.
Entanglement is a feature of quantum mechanics which does not appear classically, and it
serves as a resource for quantum technologies. In condensed matter theory, the area law
says that the amount of entanglement between a subsystem and the rest of the system is
proportional to the area of the boundary of the subsystem [1]. A system that obeys an area
law can be simulated more efficiently than an arbitrary quantum system, and an area law
provides useful information about the low-energy physics of the system [1–3]. The area law
has only been proved for one-dimensional systems with a constant-energy spectral gap [4].
However, it is widely believed that for physically reasonable quantum systems, the area law
could not be violated by more than a logarithmic factor in the system’s size [5]. Here, we
introduce a class of exactly solvable one dimensional models that have exponentially more
entanglement than previously expected, and violate the area law by a square root factor.
In addition to using recent advances in quantum information theory, we have drawn upon
various branches of mathematics in our work. We hope that the tools we have developed
may be useful for other problems in physics as well.

The study of quantum many-body systems (QMBS) is the study of matter. One of the properties
of the QMBS is the amount of entanglement contained in them. Entanglement can be used as a
resource for quantum technologies and information processing [6]; however, at a fundamental level
it provides information about the quantum state of matter such as near criticality [3, 7]. Moreover,
systems that posses a large amount of entanglement are usually hard to simulate on a classical
computer [1, 2]. The area law says that entanglement entropy between two subsystems of a system
is proportional to the area of the boundary between them. The ground state and low energy excited
states of a QMBS are expected to obey the area law up to a logarithmic factor [1]. A generic state
does not obey an area law [8]; therefore obeying an area law implies that a QMBS possesses a lot
less amount of quantum correlations than generically expected.

How hard is it to simulate QMBS? How much entanglement can simple physical quantum systems
posses? One can imagine that any given problem has inherent constraints such as underlying
symmetries, locality of interaction [9], etc. that restrict the states to reside on special sub-manifolds
and render their efficient simulation.

The interactions in QMBS are usually, to a good approximation, local [9] a consequence of which
is the sub-volume scaling of the entanglement entropy [1]. The rigorous proof of an general area
law does not exist; however, Hastings proved that it holds for one dimensional gapped systems [4].
That is 1D gapped systems have a constant, independent of the number of particles, amount of
entanglement. Later Wolf et al proved that the information contained in part of a system in thermal
equilibrium obeys an area law [10]. Brandão and Horodecki showed that in 1D, exponential decay
of correlations implies an area law as expected [11].

Since the AKLT model [12] we have come to believe that one dimensional systems are typi-
cally easy to simulate. Later density matrix renormalization group (DMRG) [13] and its natural
representation by matrix product states (MPS) [14, 15] gave systematic recipes for truncating the
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Figure 1: Labeling the states for s = 2.

Hilbert space based on ignoring zero and small singular values in specifying the states of 1D sys-
tems. DMRG and MPS have been tremendously successful in practice for capturing the properties
of QMBS in physics and chemistry [16–19]. One wonders about the limitations of DMRG.

Swingle and Senthil [5] defined what constitutes a “physically reasonable” model and based on
scaling arguments argued that local Hamiltonians with unique ground states can violate the area
law by at most a log (n) factor, where n is the number of particles. This implies that log (n) is
the maximum expected entanglement entropy in physical spin chains. There are various interesting
examples of Hamiltonians [20, 21] that have larger, even linear, scaling of entanglement entropy
with the system’s size but these do not satisfy the “physically reasonable” criteria.

Bravyi et al [22] proposed the first example of a frustration free (FF) translationally invariant
spin−1 chain with a local Hamiltonian that has a unique ground state and non-trivial entanglement.
It was found that the Schmidt rank is χ = n+ 1 and that the entanglement entropy S = 1

2 log n+ c
where c is a constant. Moreover, the gap was proved to be poly (1/n).

We generalize the spin−1 model of Bravyi et al [22] to all integer spin-s chains, whereby we
introduce a class of exactly solvable models that are physical and exhibit signatures of criticality,
yet violate the area law by a power law. The proposed Hamiltonian is local and translationally
invariant in the bulk. We prove that it is FF and has a unique ground state. Moreover, we prove
that the energy gap scales as n−c, where using the theory of Brownian excursions we prove that
the constant c ≥ 2. This rules out the possibility of these models being describable by a conformal
field theory and it improves the previous bounds in [22]. We analytically show that the Schmidt
rank grows exponentially with n and that the half-chain entanglement entropy to the leading order
scales as

√
n . Lastly, we introduce an external field which allows us to remove the boundary terms

yet retain the desired properties of the model. We now describe the details of the model.
Let us consider an integer spin−s chain of length 2n. It is convenient to label the d = 2s + 1

spin states by
{

0, `1, `2, · · · , `s, r1, r2, · · · , rs
}
where ` means a left parenthesis (or a step up) and

r a right parenthesis (or a step down) as shown in Fig. 1. We distinguish each type of steps (or
parenthesis) by associating a color from the s colors shown as superscripts on ` and r.

A Motzkin walk on 2n steps is any walk from (x, y) = (0, 0) to (x, y) = (2n, 0) with steps (1, 0),
(1, 1) and (1,−1) that never passes below the x-axis, i.e., y ≥ 0. An example of such a walk is shown
in Fig. 2. The height in the middle is 0 ≤ m ≤ n which results from m steps up with the balancing
steps down on the second half of the chain. In our model the unique ground state is the s−colored
Motzkin state which is defined to be the uniform superposition of all s colorings of Motzkin walks
on 2n steps. The nonzero heights in the middle is the source of the mutual information between
the two halves and the large entanglement entropy of the half-chain (Fig. 2).

The Schmidt rank is sn+1−1
s−1 ≈ sn+1

s−1 , and using a two dimensional saddle point method, the
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Figure 2: A Motzkin walk with s = 2 colors of length 2n = 10. The height m quantifies the degree of
correlation between the two halves.

half-chain entanglement entropy asymptotically is

S = 2 log2 (s)
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and γ is the Euler constant. The ground state is a pure state (which we call the
Motzkin state), whose entanglement entropy is zero. However, the entanglement entropy quantifies
the amount of disorder produced (i.e., information lost) by ignoring half of the chain. The leading
order

√
n scaling of the entropy establishes that there is a large amount of quantum correlations

between the two halves.
Consider the following local operations to any Motzkin walk: interchanging zero with a non-flat

step (i.e., 0rk ↔ rk0 or 0`k ↔ `k0) or interchanging a consecutive pair of zeros with a peak of a
given color (i.e., 00↔ `krk). Any s−colored Motzkin walk can be obtained from another one by a
sequence of these local changes. To construct a local Hamiltonian with projectors as interactions
that has the uniform superposition of the Motzkin walks as its zero energy ground state, each of the
local terms of the Hamiltonian has to annihilate states that are symmetric under these interchanges.
Local projectors as interactions have the advantage of being robust against certain perturbations
[23]. This is important from a practical point of view and experimental realizations.

Therefore, the local Hamiltonian, with projectors as interactions, that has the Motzkin state as
its unique zero energy ground state is

H = Πboundary +
2n−1∑
j=1

Πj,j+1 +
2n−1∑
j=1

Πcross
j,j+1, (1)

where Πj,j+1 implements the local changes discussed above and is defined by

Πj,j+1 ≡
s∑

k=1

[
Rk〉j,j+1〈Rk + Lk〉j,j+1〈Lk + ϕk〉j,j+1〈ϕk

]
with Rk〉 ∼

[
0rk〉 − rk0〉

]
, Lk〉 ∼

[
0`k〉 − `k0〉

]
and ϕk〉 ∼

[
00〉 − `krk〉

]
. The projectors

Πboundary ≡
∑s

k=1

[
rk〉1〈rk + `k〉2n〈`k

]
select out the Motzkin state by excluding all walks that

start and end at non-zero heights. Lastly, Πcross
j,j+1 =

∑
k 6=i `

kri〉j,j+1〈`kri ensures that balancing is
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well ordered (i.e., prohibits 00 ↔ `kri); these projectors are required only when s > 1 and do not
appear in [22].

The difference between the ground state energy and the energy of the first excited state is called
the gap. One says a system is gapped when the difference between the two smallest energies is at
least a fixed constant in the thermodynamical limit (n→∞). Otherwise the system is gapless.

Whether a system is gapped and, when gapless, the scaling by which the gap vanishes as a
function of the the system’s size, have important consequences for its physics. For example, gapped
systems have exponentially decaying correlation functions [21], and quantum critical systems are
necessarily gapless [24]. Moreover, systems that obey a conformal field theory are gapless but the
gap must vanish as 1/n [25]. Therefore, to quantify the physics, it is desirable to find new techniques
for analyzing the gap that can be applied in other scenarios.

The model proposed here is gapless and the gap scales as n−c where c ≥ 2 is a constant. We
prove this by finding two function both of which are inverse powers of n such that the gap is always
smaller than one of them (called an upper bound) and greater than the other (called a lower bound).
We utilize techniques from various branches of mathematics and computer science.

To prove an upper bound on the gap one needs a state φ〉 that has a small constant overlap with
the ground state and such that 〈φ|H|φ〉 ≥ O

(
n−2

)
. Take

φ〉 =
1√
M2n

∑
mp

e2πiθ̃Ãp mp〉, (2)

where the sum is over all Motzkin walks, M2n is the total number of Motzkin walks on 2n steps,
Ãp is the area under the Motzkin walk mp and θ̃ is a constant to be determined by the condition
of a small constant overlap with the ground state. The overlap with the ground state is defined by
〈M2n|φ〉 = (1/M2n)

∑
mp
e2πiθ̃Ãp . As n→∞, the random walk converges to a Wiener process [26]

and a random Motzkin walk converges to a Brownian excursion [27]. We scale the walks such that
they take place on the unit interval. The scaled area is denoted by A and θ̃ → θ. In this limit, the
overlap becomes (see Fig. 3)1

lim
n→∞

〈M2n|φ〉 ≈ FA (θ) ≡
∫ ∞
0

fA (x) e2πixθdx , (3)

where fA (x) is the probability density function for the area of the Brownian excursion [28] shown in
Fig. 3. In Eq. 3, taking θ � O (1), gives limn→∞〈M2n|φ〉 ≈ 1 because it becomes the integral of a
probability distribution. However, taking θ � O (1) gives a highly oscillatory integrand that nearly
vanishes. To have a small constant overlap with the ground state, we take θ to be the standard of
deviation of fA (x). Direct calculation then gives 〈φ|H|φ〉 = O

(
n−2

)
. This upper bound decisively

excludes the possibility of the model being describable by a conformal field theory [29].
Using various ideas in perturbation theory, computer science, and mixing times of Markov chains

we obtain a lower bound on the gap that scales as n−c, where c � 1. The lower bound on the
gap is essentially an extension of the previous work [22]. Since it might be of independent interest
in other contexts, we present a combinatorial and self-contained exposition of the proof in the SI,
different in some aspects from that given in [22].

The model above has a unique ground state because the boundary terms select out the Motzkin
state among all other walks with different fixed initial and final heights. Without the boundary
projectors, all walks that start at height m1 and end at height m2 with −2n ≤ m1,m2 ≤ 2n are
ground states. For example, when s = 1, the ground state degeneracy grows quadratically with the

1 FA (θ) is the Fourier transform of the probability density function which is called the characteristic function.
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Figure 3: Left: Plot of the probability density of the area of a Brownian excursion fA (x) on [0, 1]. Right:
Fourier transform of fA (x) as defined by Eq. 3.

system’s size 2n and exponentially when s > 1.
For the s = 1 case, if we impose periodic boundary conditions, then the the superposition of all

walks with an excess of k left (right) parentheses is a ground state. This gives 4n + 1 degeneracy
of the ground state, which include unentangled product states.

When s > 1, each one of the walks with k excess left (right) parenthesis can be colored expo-
nentially many ways; however, they will not be product states. Consider an infinite chain (−∞,∞)
and take s > 1. There is a ground state of this system that corresponds to the balanced state,
where on average for each of the types of parentheses, the state contains as many `i as ri. Sup-
pose we restrict our attention to any block of n consecutive spins. This block contains the sites
j, j + 1, . . . , j + n− 1, which is a section of a random walk. Let us assume that it has initial height
mj and final height mj+n−1. Further, let us assume that the minimum height of this section is mk

with j ≤ k ≤ j + n− 1. From the theory of random walks, the expected values of mj −mk and of
mj+n−1−mk are Θ(

√
n). The color and number of any unmatched left parentheses in this block of

n spins can be deduced from the remainder of the infinite walk. Thus a consecutive block of n spins
has an expected entanglement entropy of Θ (

√
n) with the rest of the chain. A similar argument

shows that any block of n spins has an expected half-block entanglement entropy of Θ (
√
n).

If we take s = 1, where the ground state can be a product state, the
√
n unmatched paren-

theses just mentioned can be matched anywhere on the remaining left and right part of the chain.
Two consecutive blocks of n spins can be unentangled because the number of parentheses that
are matched in the next block is uncorrelated with the number of unmatched parentheses in the
first block. However, when s > 1 the ordering has to match. Even though the number of un-
matched parentheses in two consecutive blocks is uncorrelated, the order of the types of unmatched
parentheses in them agrees.

The Hamiltonian without the boundary terms is truly translationally invariant, yet has a de-
generate ground state. We now propose a model with a unique ground state and other desirable
properties, such as the gap and entanglement entropy scalings. To do so, we put the system in an
external field, where the model is described by the new Hamiltonian

H̃ ≡ H + ε0 F

F ≡
2n∑
i=1

{r〉i〈r + `〉i〈`}

where, H is as before but without the boundary projectors and 0 < ε0 � 1. It is clear that F treats
` and r symmetrically; therefore, the change in the energy as a result of applying an external field
depends only on the total number of unmatched parentheses denoted by m. We denote the change
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in the energy of m unmatched parenthesis by ∆Em. When s = 1, the degeneracy after applying
the external field will be, one for the Motzkin state, two-fold when there is a single imbalance,
three-fold for two imbalances, etc. Since the energies are equal for all m imbalance states, it is
enough to calculate the energy for an excited state with m imbalances resulting only from excess
left parentheses. We denote these states by gm〉, where 0 ≤ m ≤ 2n.

The first order energy corrections, obtained from first order degenerate perturbation theory, are
analytical shown to be

ε0
2n
〈gm|F |gm〉 ≈ 2σnε0 +

ε0m

16
√
s

(m
n

)
. (4)

The physical conclusion is that the Hamiltonian without the boundary projectors, in the presence of
an external field, F , has the Motzkin state as its unique ground state with energy 2σnε0. Moreover,
what used to be the rest of the degenerate zero energy states, acquire energies above 2σnε0 that
for first elementary excitations scales as 1/n. Based on numerical work, we believe that the gap in
the balanced space scales as 1/n2.

The energy corrections just derived do not mean that the states with m imbalances will make
up for all of the the low energy excitations. For example, when s > 1, in the presence of an
external field, the energy of states with a single crossed term will be lower than those with large m
imbalances and no crossings.

Lastly for small ε0 the ground state will deform away from the Motzkin state to prefer the
terms with more zeros in the superposition. But as long as ε0 is small, the universality of Brownian
motion guarantees the scaling of the entanglement entropy. It is, however, not yet clear to us
whether ε0 can be tuned to a quantum critical point where the ground state has a sharp transition
from highly entangled to nearly a product state. It is possible that the transition is smooth and
that the entanglement continuously diminishes as ε0 becomes larger. For example, in the limit
where ε0 � 1, the effective unperturbed Hamiltonian is approximately F , whose ground state is
simply the product state 0〉⊗2n.

Our model shows that simple 1D systems can possess high amount of quantum correlations (i.e.,
entanglement). From a fundamental physics perspective, it is surprising that a 1D translationally
invariant quantum spin chain with a unique ground state has about

√
n entanglement entropy.

Moreover, this adds to the collection of exactly solvable models from which further physics can be
extracted. Such a spin chain can in principle be experimentally realized, and the large amount of
entanglement may serve as a resource for quantum technologies.
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