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Introduction.
The ability to store classical information robustly for long periods of time is one we often take for

granted. We can encode classical bits onto magnetic hard drives and expect them to remain there
undecayed into the foreseeable future. Intuitively, this is because the 3D Ising ferromagnet (our toy
model for a magnetic hard drive bit) is a self-correcting classical memory. In comparison, current
protocols for storage of quantum information on long timescales seem quite arduous, typically
requiring constant active intervention to correct for errors that may have occurred. As such,
there is significant interest from both an abstract and a practical perspective as to if and how
self-correcting quantum memories might be realised. A practical self-correcting quantum memory
would allow for arbitrarily long storage of quantum information at finite temperature without the
need for active error-correction techniques.

The 4D toric code is a simple, exactly solvable example of a spin system with local interactions
in 4 spatial dimensions that is known to have self-correcting properties [1, 2]. In this system,
quantum information may be stored at finite temperature for an exponentially long time in the
system size without decaying. This model also has a number of other desirable properties, such
as being stable against Hamiltonian perturbations and having an efficient decoder for the stored
qubits. It is unfortunate that it would require 4 spatial dimensions to realise such a model, and
it is of interest to determine whether similar quantum self-correction can be engineered in a more
physical setting.

In 2D, the toric code [3] is known to be unstable at finite temperature [4], and there are numerous
no-go theorems that rule out broad classes of models for self-correction [5–7]. Despite this, some
attempts have been made to engineer quantum memories in 2D systems with some partially self-
correcting behaviour [8–10]. Many approaches towards realising some aspects of self-correction in
3D have also been found, notably including the Haah code [11–14], which gives a power-law relation
between memory lifetime and system size - but only up to a certain (temperature-dependent)
critical value of system size. The thermodynamic limit of such a system does not act as a reliable
quantum memory at finite temperature. Other approaches to quantum self-correction in 3D are
numerous and varied [15–21], including making use of long-range interactions, dissipative dynamics,
and bosonic modes rather than finite dimensional spins. No previously known local Hamiltonian
spin models in 2D or 3D are fully self-correcting in the sense of an asymptotically exponential
memory lifetime. There are also several no-go results restricting possible self-correcting models in
3D [22–24].

Main result.
We propose a family of local CSS stabilizer codes in 3D as candidates for self-correcting quantum

memories. Our approach is based on fractal geometries, and inspired by the classical self-correcting
behavior of an Ising model on a Sierpinski carpet graph. The Sierpinski carpets [25] are a family of
fractal subsets of R2 with Hausdorff dimension between 1 and 2. We propose a family of quantum
CSS codes that can be regarded as 4D toric codes on the product of two Sierpinski carpets (with
appropriate boundary conditions). Concretely, these codes are defined through the homological
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FIG. 1: The first few iterations of the Sierpinski carpet graphs (black) for the simplest Sierpinski
carpet, overlaid on the carpet itself at the same iteration (gray)

product [26, 27] of two toric codes on 2D Sierpinski carpet graphs, yielding a code with extensive
degeneracy. Though this model naturally embeds in R4, by choosing the Hausdorff dimension of
the Sierpinski carpet small enough we can ensure that the resulting system may be embedded in
R3 with finite distortion. We call these codes embeddable fractal product codes (EFPCs).

We show that the local stabilizer spin models corresponding to these codes have two phase
transitions at finite temperature, one associated with each sector (X or Z) of the code. The tools
we use to show this are generalized duality transformations and correlation inequalities. Given these
phase transitions, we argue that it is likely the EFPC system acts as a self-correcting quantum
memory at temperatures below the (lowest) critical temperature.

Embeddable fractal product codes.
Classically, the 2D Ising model is a self-correcting memory at finite temperature, while the 1D

Ising model is not. Quantumly, the 4D toric code is a self-correcting quantum memory at finite
temperature, while the 2D toric code is not. In this context, quantum looks like the “square” of
the classical. Since we are interested in the possibility of quantum self-correction in a 3D system,
a natural question is whether or not classical systems in 1.5 dimensions are able to act as self-
correcting memories.

In order to talk sensibly about such fractional dimension objects, the natural context is fractal
geometries. Fractal objects have dimension that interpolates between the familiar integral topologi-
cal dimensions, and which can be quantified in several useful ways, such as the Hausdorff dimension
or the box-counting dimension. The Sierpinski carpets [25] are a family of fractals with dimension
between 1 and 2, and are naturally defined as self-similar subsets of R2. These Sierpinski carpets
are usually obtained by subdividing the unit square into a number of smaller squares, deleting
a subset of them, and iterating this procedure. Associated with each stage of this iteration is a
Sierpinski carpet graph, which is a subgraph of the square lattice whose holes reflect the deleted
regions of the Sierpinski carpet (for example, the first few graphs for a particular Sierpinski carpet
are shown in Fig. 1).

It is possible to define a classical ferromagnetic Ising model on a Sierpinski carpet graph, and
study the thermodynamic properties of such a model. These systems have 2-fold degenerate ground
spaces, and thus can be considered as classical codes. General arguments suggest [28, 29], many
numerical studies demonstrate (e.g. [30, 31]), and it can be rigorously proved [32–34], that such a
family of Ising models has a phase transition at non-zero temperature. Intuitively, this is due to the
fact that the Sierpinski carpet graphs have infinite ramification order (i.e. in the thermodynamic
limit, an infinite number of bonds must be cut to separate the graph into two infinite pieces).
Below the critical temperature, these systems act as a self-correcting classical memory.

The idea that “quantum is the square of the classical” suggests that a suitable self-correcting
quantum memory may thus be defined on the product of two Sierpinski carpet graphs. In order to
explicitly construct such codes, we make use of the homological product of two CSS codes [26, 27].
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The homological product is a construction for building new CSS codes from existing ones, making
use of the tools of algebraic topology. In this picture, each code is represented by a chain complex of
three spaces corresponding to the X-type stabilizers, Z-type stabilizers, and physical qubits. The
relationships between the stabilizers and qubits are represented by maps between these spaces.

The homological product gives a mechanism for combining two such chain complexes to give a
new one. Many properties of the CSS code obtained in this way, for example its degeneracy, can
also be found directly from properties of the component codes. We define the embeddable fractal
product codes through the homological product of a toric code on a Sierpinski carpet graph (with
punctures for each hole in the Sierpinski carpet) and its dual. The resulting code is intuitively the
4D toric code defined on the product of a Sierpinski carpet graph with its planar dual (again with
appropriate punctures).

The logical qubits of this code come in two types. There are an extensive number of encoded
qubits associated with punctures in the 4D lattice. These have logical operators that may be
localized to the regions around each of these punctures, and so are local degeneracies in this sense
(though the punctures appear at all length scales). There is also a single encoded qubit associated
with the outer boundaries of the 4D lattice, and the corresponding logical operators are fractal
membranes whose support lies on 2D cross-sections of the lattice. We anticipate that the phase
transitions we identify in this system correspond to the appearance of thermal stability for this
global encoded qubit.

The 4D fractal lattice just described is a discretization of the product of two Sierpinski carpets.
The parameters of the Sierpinski carpets may be chosen such that the Hausdorff dimension of such
a fractal object is less than 3, but it is naturally embedded in R4. Though it is generally difficult
to determine whether or not a fractal may be embedded in another space, we can use embedding
theorems for a special class of self-similar fractals satisfying the so-called strong separation condi-
tion [35] that guarantee low distortion (or bilipschitz) embeddings exist. This allows us to show
that the embeddable fractal product codes are indeed realizable with local interactions in R3.

We study the thermodynamic properties of these codes, and relate each of the sectors (X or Z)
of the quantum code to a classical generalized Ising model. Using duality transformations due to
Merlini and Gruber [36], and the GKS correlation inequalities [37, 38], we are able to relate the
thermodynamic properties of these classical Ising models to those of the Sierpinski carpet Ising
models mentioned previously. Since it is known that the Sierpinski carpet Ising models have a
finite temperature phase transition [32–34], we conclude that the EFPC Hamiltonian has two finite
temperature phase transitions (one associated with each of the sectors). This strongly indicates
that, below the critical temperatures, there will be an exponential memory lifetime for the encoded
quantum information. Based on this evidence, it seems likely that the EFPC Hamiltonian may act
as a self-correcting quantum memory in 3D.
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