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We present a unitary 2-design on n qubits that can be exactly implemented withO(n log n log log n)

elementary gates from the Clifford group (assuming the Extended Riemann Hypothesis is true).

This is essentially a quadratic improvement over all previous (exact and approximate) construc-

tions, which all use Ω̃(n2) gates. (There is one exception, where O(n log 1/ε) gates suffice for a

notion of approximation within ε in a limited context.) Furthermore, our constructions require

only O(n) randomness and can be implemented in logarithmic depth.

1 Introduction

The Haar measure on the unitary group is the unique measure that is invariant under multiplica-
tion by any group element. Haar-random unitaries, by their symmetries, facilitate many analyses
in quantum information [11, 12, 10, 13, 9]. However, Haar-random unitaries have very high com-
putational complexity in that most of them cannot be efficiently implemented or reasonably well
approximated by circuits of size polynomial in the number of qubits. They are also expensive to
sample in terms of the amount of randomness required. Unitary 2-designs are probability distribu-
tions on finite subsets of the unitary group that have some specific properties in common with the
Haar measure—and they can have the advantage of being computable by polynomial-size circuits
and having low sampling complexity. Unitary 2-designs (and approximations of them) have been
applied as efficient ways of achieving bilateral twirling [6], channel twirling [5], and decoupling [16].

There are different ways of defining a unitary 2-design (e.g., in [5, 6, 8]) that are equivalent. One
equivalent definition that is operational and conceptually simple is the following. A unitary 2-design
is a distribution that is two-query indistinguishable from the Haar distribution. That is, no circuit
that makes two queries, each to U or to U † (as illustrated in Fig. 1), can distinguish between these
two cases: (a) U is sampled according to the Haar measure; (b) U sampled with respect to the
unitary 2-design.
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Figure 1: Illustration of the two-query indistinguishable property: querying U twice (left); or querying U
and U† (right). The initial state is arbitrary, V is an arbitrary unitary, and the measurement is arbitrary.
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Note that this definition of a unitary 2-design is a clear quantum analogue of a 2-universal hash
function [3].

The notion of an approximate unitary 2-design has been defined in various ways [5, 6, 8]. One possi-
ble definition is to relax the above indistinguishability scenario, where the distinguishing probability
is allowed to exceed 1

2 , but must be bounded by 1
2 + ε. However, the analogous natural relaxations

of the other definitions of unitary 2-designs are not known to be equivalent (and there is evidence
that some are strictly weaker).

2 Previous work

The uniform distribution on the Clifford group is a unitary 2-design (in the exact sense) [5, 6]. This
implies that the circuit complexity is O(n2/ log n) where the gates are one- and two-qubit gates
from the Clifford group [1]. Moreover, the sampling cost is O(n2) random bits of entropy.

A construction in [8] based on a random circuit generation yields εb-approximate unitary 2-designs of
size O(n(n+log 1/εb)), where the notion of approximation is related to a bilateral twirling operation.
Another construction [5] yields circuits of size O(n log 1/εc) for a notion of approximation related to
channel twirling; however, there is evidence (see, e.g., section 1.1 of [2]), that the calibration of the
approximation used incurs a blow-up by a factor of 2n in the bilateral twirl context. In other words,
for the more general setting, we need εc ≤ εb/2n—so the circuit size becomes O(n(n+ log 1/εb)).

All of these constructions incur circuits of size Ω̃(n2) and require Ω(n2) random bits of entropy for
exact unitary 2-designs as well as their approximations related to bilateral twirling.

Reference [4] proves that there exists a small subgroup of the Clifford group that gives rise to
an exact unitary 2-design that uses 5n random bits of entropy. Reference [7] and [14] study the
necessary and sufficient entropy for exact and approximate unitary 2-designs. Approximately 4n
random bits of entropy are necessary. The circuit complexities for these constructions are unknown.

2 New result

We give a construction of exact unitary 2-designs of circuit size equal to the asymptotic cost of
multiplication by arbitrary constants in the finite field GF(2n), where GF(2n) is represented by a
self-dual basis.

We also observe (from existing results [17, 15]) that, under the Extended Riemann Hypothesis
(ERH), for infinitely many n, the circuit size for multiplication in GF(2n) with respect to a self-
dual basis is O(n log n log logn). Therefore, for infinitely many n, under the ERH, we have a unitary
2-design with circuit-size O(n log n log logn) ⊂ Õ(n). The elementary gates used by these circuits
are one- and two-qubit gates in the Clifford group.

Since our constructions yield exact unitary 2-designs, they are also valid for all notions of approx-
imate unitary 2-designs.

3 New techniques

To explain our techniques, we first describe a primitive called “Pauli mixing,” which, when com-
posed with a random Pauli operation, provides one way to construct a unitary 2-design. A prob-
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ability distribution of unitaries performs Pauli mixing if, for any non-trivial Pauli matrix P , the
process of choosing a unitary U randomly from the distribution and then conjugating P by U
results in a uniform distribution on all the 4n−1 non-trivial Pauli operations. Let I,X, Y, Z denote
the single-qubit Pauli matrices. Fig. 2 illustates the 15 non-trivial 2-qubit Pauli matrices arranged
with rows and columns correspinding to their X-structure and Z-structure (respectively).

IX XI XX
IZ IY XZ XY
ZI ZX Y I Y X
ZZ ZY Y Z Y Y

Figure 2: A natural arrangement of all the non-trivial 2-qubit Paulis into rows and columns. Pauli mixing
requires a uniform distribution on the 15 items.

One of our contributions is to show that there exists a decomposition of the unitaries from the
subgroup of the Clifford group used in [4] into a constant number of primitive operations. The
dominant cost is that of one of these primitive operations: a “multiply-by-r” gate Mr that acts as
Mr|c〉 = |rc〉, where rc denotes the product when {0, 1}n are interpreted as the elements of the finite
field GF(2n) with respect to a self-dual basis. (We do not know how to make our construction work
efficiently with the basis that results from standard constructions of GF(2n) in terms of irreducible
polynomials.)

We also observe that, based on results in the existing literature, multiplication in GF(2n) with
respect to a self-dual basis can be performed with O(n log n log log n) gates for infinitely many n
using assuming ERH. (It should be noted that the cost of multiplication in GF(2n) can be basis-
dependent.) In our context, the circuits need to perform multiplication by any non-zero constant
from GF(2n). Each of our constant-multiplication circuits reduces to CNOT gates—hence is in the
Clifford group. These circuits use ancilliary qubits that are each initially in state |0〉 and returned
to this state at the end of the computation of the multiplication.
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