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Abstract

We introduce a technique for applying quantum expanders in a distributed fashion, and use it to solve
two basic questions: testing whether a bipartite quantum state shared by two parties is the maximally
entangled state and disproving a generalized area law. In the process these two questions which appear
completely unrelated turn out to be two sides of the same coin. Strikingly in both cases a constant amount
of resources are used to verify a global property.

Introduction. In this paper we address two basic questions:

1. Can Alice and Bob test whether their joint state is maximally entangled while exchanging only a
constant number of qubits? More precisely, Alice and Bob hold two halves of a quantum state |ψ〉 on
a D2-dimensional space for large D, and would like to check whether |ψ〉 is the maximally entangled
state |φD〉 = 1√

D ∑x |x〉|x〉 or whether it is orthogonal to that state. So far, all known protocols for
this task require resources (communication, shared randomness or catalyst) which grow polynomially
in log(D) [3, 2, 8].

2. Is there a counterexample to the generalized area law? A sweeping conjecture in condensed matter
physics, and one of the most important open questions in quantum Hamiltonian complexity theory, is
the so called Area Law, which asserts that ground states of quantum many body systems on a lattice
have limited entanglement. Specifically, assume the system is described by a gapped local Hamil-
tonian H = H1 + . . . + Hm, where each Hi describes a local interaction between two neighboring
particles of a lattice. The area law conjectures that for every subset S of the particles, the entangle-
ment entropy between S and S̄ for the ground state of H is bounded by a constant times the size of
the boundary of S. The area law, which has been proven for 1D lattices [9] and is conjectured for
higher degree lattices, is of central importance in condensed matter physics as it provides the basic
reason to hope that ground states of such systems might have a succinct classical description. The
generalized area law (a folklore conjecture) transitions from this physically motivated phenomenon
to a very clean and general graph theoretic formulation, where in place of edges of the lattice, the
terms of the Hamiltonian correspond to edges of an arbitrary graph. It states that for any subset S
of vertices (particles), the entanglement entropy between S and S̄ for the ground state is bounded by
some constant times the cut-set of S (the number of edges leaving S).

We affirmatively answer both questions using a similar technique: applying quantum expanders distribu-
tively.

Techniques The main ingredient is the notion of quantum expanders. A quantum expander can be thought
of as a collection of d unitaries Ui, (think of d as a constant) each acting on a (possibly large) dimension
D Hilbert space. For any X on the D dimensional Hilbert space, E(X) = 1

d ∑d
i=1 UiXU†

i has the unique
eigenvalue 1 for the eigenvector X = I and next highest singular value λ < 1. It thus shrinks any matrix
orthogonal to the identity by a constant factor. The key to the results in the paper is an equivalent way to
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view quantum expanders, by considering their action on maximally entangled states. It is well known that
for any U, U ⊗ U∗ acting on the maximally entangled state leaves it as is. Of course, this remains true
even if U is drawn uniformally at random from the set U1, . . . , Ud of the expander. The remarkable fact is
that even though quantum expanders use only a constant number d of unitaries, they leave in tact only the
maximally entangled state, and all other states are shrinked by at least a constant.

For the entanglement testing problem, we use the above intuition to derive a communicating protocol
which uses only a constant number of qubits, and detects a maximally entangled state of arbitrary dimension.
The idea is that Alice prepares the control state ∑d

i=1 |i〉|i〉 and sends to Bob one half of this state, which
enables them to synchronize which Ui ⊗UT

i they apply. Bob can then send the register back to Alice, who
can then test that the control state remained in tact, implying that the state on which it was applied was not
affected, hence, it must have been the maximally entangled state. We derive that for any D, ε > 0, there
exists a protocol which uses O(log 1/ε) qubits of communication, after which Bob always accepts if the
shared state is |φD〉. If the shared state is orthogonal to |φD〉, he accepts with probability at most ε. If Alice
and Bob do start with the maximally entangled state |φD〉, the protocol does not damage the state.

Figure 1: a) A counterexample to the generalized area law, consisting of a chain of complete graphs separated by the
middle edge. The entropy across the cut grows as Ω (nc), where n is the total number of particles. b) A four-particle
construction. c) Short chain framework for proving 1D area law.

For a counterexample to the generalized area law, we use the above intuition to exhibit a gapped local
Hamiltonian acting on the graph featured in Figure a, for which the entanglement entropy of the ground
state across the middle cut is Ω(nc) for some 0 < c < 1 (rather than O(1) as predicted by the generalized
area law). The core step in generating this example is the construction of a simpler system consisting of
four particles on a line (see Figure b): two particles of dimension d = 3 (qutrits) in the middle, and two
particles of dimension D at the two ends, with D is arbitrarily large. The gapped Hamiltonian is of the form
H = HL + HM + HR, where HL acts between the left particle and the left qutrit, HM between the two
qutrits, and HR between the right qutrit and the right particle. Crucially, the entanglement entropy of the
ground state across the middle cut is Ω(log D).

Like in the communication protocol, we use the middle particles to synchronize the application of the
expander on the left and right sides. This requires only a single term of the Hamiltonian, acting on two
d-dimensional particles. This four particles example is then converted to a counter example to the gener-
alized area low with bounded dimensional particles (albeit with unbounded degree of interaction) by ap-
plying Kitaev’s circuit-to-Hamiltonian construction to implement the Ui, followed by an application of the
strengthening gadgets of [6].

Discussion and open questions Our two results are reminiscent in spirit to the classical PCP theorem, or
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more generally to property testing: all those are examples where a small amount of resources (bits checked,
Hamiltonian interactions, qubits transmitted, etc.) serve to verify the properties of some large object. How-
ever, the fact that such highly non-local properties as global entanglement can be detected using local re-
sources seems rather counter-intuitive. Enforcing of a large amount of entanglement by a single O(1) norm
constraint is a surprising quantum phenomenon — we note that in the analogous probabilistic situation,
in which we consider the uniform distribution over the set of all possible solutions to constraints set on
the graph, the middle constraint can only enforce a convex combination of a constant number of product
distributions.

What do our results imply regarding the 2D area law, which was indeed the main motivation for this
work? The best current 1D area law [1] works within a model very similar to our four body Hamiltonian,
except the middle link in [1] is extended into a finite chain of s = Ω(log2 d/ε) particles, each of dimension
d (see figure c). This yields an area law bound of S1D = O(log3 d/ε) across the middle cut. It was
observed in [1] that any slight improvement in the exponent of log d would imply a non-trivial sub-volume
law for 2D systems. The crucial parameter in improving the result is the length of the middle chain; Our
four body Hamiltonian shows that in the extreme case of a length 1 chain, no area law holds. Understanding
the intermediate regime is thus an important open question.

A more modest goal than resolving the 2D area law, would be to reduce the degree in our construction
to a constant. Such a step already seems to require significant progress in our understanding of related
notions, e.g., parallel circuit-to-Hamiltonian constructions (see e.g.,[5]), and quantum expanders which are
geometrically constrained.

A possible criticism to our generalized area law counter example is as follows. Should we not expect a
generalized area law only in constant degree graphs, where we know that correlations decay exponentially
in the groundstate of gapped Hamiltonians? After all, in the 1D case the area law follows from exponential
decay of correlations [4]. We stress that the connection between exponential decay of corrleations and area
laws is in itself merely conjectured in general graphs; it is known to hold only in 1D chains. One might
indeed view our results as further evidence that such a connection holds also in higher dimensions

Finally, we believe that our results point at a fundamental link between two seemingly unrelated topics.
As we show in the paper, it is possible to derive a counterexample to the generalized area law, by starting
from an entanglement testing protocol of limited communication, and converting it into a Hamiltonian using
Kitaev’s circuit-to-Hamiltonian construction. The resulting Hamiltonian can be viewed as a ”tester” of its
highly entangled groundstate, where the norm of the Hamiltonian terms along the cut corresponds to the
communication complexity of the protocol. Whether such a ”translation” always exists between entangle-
ment testing protocols of limited communication, and entangled ground states of Hamiltonians with limited
interactions between different parts of the system, remains to be explored. Making such an equivalence
rigorous might open up a whole new set of tools to studying the area law question, and more generally, help
develop better intuition for local Hamiltonians and their groundstates. A related question is whether EPR
testing is in fact equivalent in some sense to the property of being a quantum expander.

Related work: We remark that our results cannot be derived, to the best of our knowledge, from the results
of Gottesman and Hastings [7] and Irani [10], or the improvements of Movassagh and Shor [11]. Those
results provide highly entangled states for Hamiltonian whose gaps are inverse polynomial. One might
using polynomially stronger interactions in those constructions, and replacing them by weaker interactions
using the gadgets of of Nagaj and Cao [6]. This fails since these gadgets, which we would have needed
to apply for every edge, introduce a complicated geometry of interactions, and so the size of the cut in the
resulting graph would no longer be small.
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