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We present the first general direct sum theorem for quantum communication complexity that holds for more
than a single round of communication. A direct sum theorem states that to compute n tasks simultaneously
requires as much resources as the amount of the given resource required for computing them separately. By a
general direct sum theorem, we mean a direct sum theorem that holds for arbitrary relations on arbitrary inputs.
The direct sum question, and the related direct product question, are of central importance in the different models
of communication complexity. They have been the subject of a lot of attention in recent years. Many results were
obtained for different models of classical communication complexity [8, 26, 40, 43, 27, 22]. Progress for quantum
communication complexity has been slower, with most results focusing on a single round of communication [46,
10, 39]. Some notable exceptions for the multi-round case are the work of Klauck, Špalek and de Wolf [52]
in which they derive a direct product theorem for disjointness, and the works of Shaltiel [59], Lee, Shraibman
and Špalek [53] and Sherstov [60] deriving direct product theorems for functions for which the discrepancy
or generalized discrepancy method is tight. Even for a single round of communication, a general direct sum
theorem was only proved earlier this year, using techniques much different from ours [6]. Previous to that work,
techniques were restricted to proving results for the restricted case of product inputs. As a corollary of our results,
we also obtain slightly improved parameters for the direct sum theorem of Ref. [6], for the single round case.

The tools that we develop to achieve such a result should be of independent interest for the quantum com-
munication complexity and quantum information theory communities. In particular, we introduce new notions
of fully quantum information cost and complexity based on conditional mutual information, derive many prop-
erties for these, and provide a one-shot compression protocol that reduce the communication cost of a protocol
proportionally to its information cost. To arrive at the new definitions, we provide a new interpretation of the
classical information cost, relating it to classical channel simulation with side information, the quantum analog
of which being state redistribution. Another particularly interesting potential application of quantum information
complexity is for tightly characterizing the bounded round quantum communication complexity of the disjoint-
ness function, an open question for more than 10 years [4, 45]. We discuss below what we believe is the most
significant progress in recent years towards answering this important question. The main bottleneck to arrive
at such a tight characterization is related to the development of lower bounds on the von Neumann conditional
mutual information, a problem of great interest in quantum information theory [55, 19, 54, 18].

Quantum Information Complexity The classical notion of information cost was introduced by Chakrabarti,
Shi, Wirth and Yao [30], who used it to derive a direct sum result for the simultaneous message passing model.
The notion they introduced is similar to what is known today as the external information cost. A notion sim-
ilar to what is now known as the internal information cost was later introduced by Bar-Yossef, Jayram, Ku-
mar and Sivakumar [7] to use a direct sum property for composite problems that decompose into simpler
ones, like the disjointness function in term of the AND function. The modern notions of external and inter-
nal information cost were formally introduced by Barak, Braverman, Chen and Rao [8], in which they prove
(non-tight) general direct sum theorems for randomized communication complexity. In particular, for input X
and Y of Alice and Bob, respectively, shared randomness R, private randomness RA, RB available to Alice
and Bob, respectively and protocol transcript Π(X,Y,R,RA, RB), the internal information cost is defined as
ICint(Π, µ) = I(X; Π|Y R) + I(Y ; Π|XR), and the external one as ICext(Π, µ) = I(XY ; Π|R). Note that
we have used Π to represent both the protocol and the protocol transcript, while µ is the prior distribution on
the inputs X,Y . It is important that only the shared randomness R enters in the information costs. The in-
terpretation of internal information cost is usually as the amount of information about Alice’s input leaked to
Bob plus the amount of information about Bob’s input leaked to Alice, while for the external information it is
as the amount of information about the joint input of Alice and Bob leaked to an external observer. Subsequent
work by Braverman and Rao [26] provided an operational interpretation of internal information complexity as the
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amortized distributional communication complexity, i.e. the communication complexity per copy for computing
n copies of a task, in the asymptotic limit of large n. They also provide a general direct sum theorem for bounded
round communication complexity. Braverman [20] provides a similar operational interpretation of a prior-free
version of information complexity as the amortized randomized communication complexity. He also list several
interesting open questions related to information complexity, one of which is to develop a quantum analog of
information complexity. He also asks whether the inherent reversibility of quantum computing, among other
properties of quantum information, will impose a limit on the potential applications of such a quantity. Note
that our results finally settle this: an operationally motivated and useful notion of quantum information cost can
indeed be defined.

In the quantum setting, many difficulties are immediately apparent in trying to generalize the classical defi-
nition. Firstly, by the no-cloning theorem [35, 64], there is no direct analogue for quantum communication of the
notion of a transcript, available to all parties and containing all previous messages. In the entanglement assisted
model, we can replace quantum communication by twice as much classical communication, by using telepor-
tation [11]. However, if we consider the transcript obtained by replacing quantum communication by classical
communication in this way, this transcript will be completely uncorrelated to the corresponding quantum mes-
sages and to the inputs. Indeed, the classical messages sent in the teleportation protocol are uniformly random,
unless we take the remaining part of the EPR pair into account. A possible way around this might be to try to
adapt the classical definition by measuring the correlations between the inputs and the whole state, after reception
of each message, of the receiving party. We can then even sum over the information contained in all messages.
This yield a sensible notion of quantum information cost which is partly classical, and a similar quantity was
used by Jain, Radhakrishnan and Sen [45] to obtain a beautiful proof of a lower bound on the bounded round
quantum communication complexity of the disjointness function. A further variation on this was used by Jain
and Nayak [42] to obtain a lower bound for a variant of the Index function. Work on direct sum results for a
single round of communication also consider related notions [46, 39, 6]. However, these partly classical notions
of quantum information cost all suffer from the drawback that they are only a lower bound on the communica-
tion cost once they have been divided by the number of messages. Then, the corresponding notion of quantum
information complexity does not have the clear operational interpretation of classical information complexity as
the amortized communication complexity, and is probably restricted to applications in bounded round scenarios.

We propose a new notion of quantum information cost, and a corresponding notion of quantum information
complexity. These are the first fully quantum definitions for such quantities. In particular, the notion of cost ap-
plies to arbitrary bipartite quantum protocols that are run on arbitrary bipartite quantum inputs, and the notion of
complexity applies to arbitrary quantum tasks on arbitrary quantum input. Of particular interest in the setting of
quantum communication complexity that we focus on in this work is the case of quantum protocols implement-
ing classical tasks, e.g. evaluating arbitrary bipartite classical functions or relations on arbitrary bipartite input
distributions below a specified error bound. However, the notion might also find applications for fully quantum
tasks, for example quantum correlation complexity [48, 49], remote state preparation [38], or interactive variants
of state redistribution [56, 34, 66] and its special cases of state merging [36, 37, 16, 5, 17], state splitting [5, 17],
and source coding [58]. To arrive at such a definition, we propose a new interpretation of the classical internal
information cost. Indeed, if we view each message generation in a protocol as a channel, then the information
cost can be seen to be equal to the sum of the asymptotic costs of simulating many copies of each such chan-
nel with side information at the receiver and feedback to the sender [56], a task related to the reverse Shannon
theorem [13, 63, 5, 12, 17]. Using known bounds for this task [56], this yield a strengthening of the classical
amortized communication result for bounded round complexity [26, 20]. In the fully quantum setting, channel
simulation, with side information at the receiver and with environment given as feedback to the sender, is equiv-
alent to the state redistribution task. This insight leads to the new, fully quantum definitions of information cost
and complexity. These new definitions are the firsts to satisfy all of the properties that we stated as desirable for
these quantum notions. In particular, we prove the following properties in Ref. [1].

Theorem 1 The quantum information cost directly provides a lower bound on quantum communication cost
for any protocol and input state, independent of the number of messages of the protocol (Lemma 1 in Ref. [1]).
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The corresponding quantum information complexity is exactly equal to the amortized quantum communica-
tion complexity for any quantum task with fixed input state, and in particular for any distributional classical task
(Theorem 2 in Ref. [1]).

Quantum information complexity obeys an exact direct sum property (Corollary 3 in Ref. [1]).
For these last two results, they hold both for a fixed or unlimited number of messages.
Protocol Compression and Direct Sum To obtain the direct sum result in Ref. [2], we also prove a protocol

compression result stating that we can compress a single copy of a bounded round protocol proportionally to its
information cost. A technical ingredient in this proof is a single-message one-shot state redistribution protocol.
A state redistribution protocol on input state ρABC , with the A and C registers initially held by Alice, and the
B register held by Bob, is a protocol that effectively transmits the C register to Bob while keeping the overall
correlation with a purifying register R, up to some small error ε. We obtain in a joint work with Berta and
Christandl [3] a communication rate upper bounded by Hε/4

max(C|B) −Hε/4
min(C|BR) + O(log(1/ε)). Indepen-

dently of our work, similar upper bounds on one-shot state redistribution have been obtained by Datta, Hsieh and
Oppenheim [33].

We then use the substate theorem of Jain, Radhakrishnan and Sen [44, 47, 41] to transform this into a bound
in terms of von Neumann conditional entropies, and what remains is a term proportional to the von Neumann
conditional mutual information, as in asymptotic state redistribution. Our compression protocol applies this
single message compression iteratively. We formulate precisely the dependence on the additional error and the
number of messages in Theorem 2.

By combining this protocol compression result with many properties of quantum information complexity in
Theorem 1 above, we can obtain our main theorem, a direct sum theorem for bounded round quantum communi-
cation complexity that holds for all quantum tasks. Note that the theorem holds in the model in which we allow
for arbitrary pre-shared entanglement. For concreteness, we state the result for classical relations.

Theorem 2 For each M -message protocol Π and input state ρ, there exists an M -message compression
protocol Π′ implementing Π on input ρ up to error Mε, and satisfying QCC(Π′) ∈ O((QIC(Π, ρ) + 1)/ε2 +
M/ε2). (Lemma 6 in Ref. [2])

For any ε1, · · · , εn, ε′′ ∈ (0, 1/2), any relations R1, · · · , Rn and any number of message M ,
QCCM (⊗i(Ri, εi)) ∈ Ω(

∑
i((

ε′′

M )2QCCM (Ri, εi + ε′′) − M))). In particular, QCCM ((R, ε)⊗n) ∈
Ω(n(( ε

′′

M )2QCCM (R, ε+ ε′′)−M)) (Corollary 4 in Ref. [2]).
Other Applications for Quantum Information Complexity Two of the main areas of success of classical

information complexity is in obtaining direct sum and direct product theorems, and in obtaining communication
complexity lower bounds, in particular on composite functions built from simpler component functions. Quantum
information complexity also satisfy an exact direct sum property for such composite functions. Indeed, we
show that on a suitably chosen input distribution, the quantum information complexity of disjointness on n
bits is exactly equal to n times the quantum information complexity of the AND function on 2 bits. A similar
property was used by Jain, Radhakrishnan and Sen [45] to obtain a lower bound of Ω(n/M2 + M) for the
communication complexity ofM -message quantum protocols, close to the best known upper bound ofO(n/M+
M) [4, 45]. Since our notion of information cost is directly a lower bound on communication, while their
notion, in general, must first be divided by M before yielding a lower bound on communication, we seem to
get an improvement by a factor of M , which would match the best known upper bound. This result seems
to lead to the most significant progress since the work of Ref. [45] towards obtaining the tight bounded round
quantum communication complexity of disjointness; see Section 7 and 8 in Ref. [1] for details. However, the
main bottleneck to complete the argument appears to be the fact that our notion of quantum information cost is
defined in term of fully quantum conditional mutual information, a quantity that is much less understood than
its classical counterpart. Obtaining meaningful lower bound on quantum conditional mutual information is a
notoriously hard problem in quantum information theory [55], with some progress in recent years [19, 54, 18].

Other potential applications is in obtaining time-space trade-off for quantum streaming algorithms [52, 42],
obtaining the exact, up to second order, communication complexity of some problems [24], investigating the
direct sum question in an unlimited round setting [8], and obtaining direct product theorems (even single round).

3



References

[1] Dave Touchette. Quantum Information Complexity and Amortized Communication. arXiv preprint, quant-
ph/1404.3733.

[2] Dave Touchette. Direct sum for bounded round entanglement-assisted communication complexity. arXiv
preprint, quant-ph/1409.4391.

[3] Mario Berta, Matthias Christandl, Dave Touchette. Smooth Entropy Bounds on One-Shot State Redistribu-
tion. arXiv preprint, quant-ph/1409.4338.

[4] Scott Aaronson, and Andris Ambainis. Quantum Search of Spatial Regions. Proceedings of the 44rd Annual
IEEE Symposium on Foundations of Computer Science (2003): 200-209.

[5] Anura Abeyesinghe, Igor Devetak, Patrick Hayden, and Andreas Winter. The mother of all protocols: Re-
structuring quantum information’s family tree. Proceedings of the Royal Society of London. Series A (2009):
2537-2563.

[6] Anurag Anshu, Rahul Jain, Priyanka Mukhopadhyay, Ala Shayeghi, and Penghui Yao. A new operational
interpretation of relative entropy and trace distance between quantum states. arXiv:quant-ph/1404.1366.

[7] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach to data
stream and communication complexity. Proceedings of the 43rd Annual IEEE Symposium on Foundations of
Computer Science (2002): 209-218.

[8] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive communication. Pro-
ceedings of the 42nd Annual ACM Symposium on Theory of Computing (2010): 67-76.

[9] Howard Barnum, Claude Crepeau, Daniel Gottesman, Adam Smith, and Alain Tapp. Authentication of Quan-
tum Messages. Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science
(2002): 449-458.

[10] Avraham Ben-Aroya, Oded Regev, and Ronald de Wolf. A hypercontractive inequality for matrix-valued
functions with applications to quantum computing and LDCs Proceedings of the Forty-Ninth Annual IEEE
Symposium on Foundations of Computer Science (2008): 477-486.
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