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Steering is the entanglement-based quantum effect that embodies the “spooky action at a dis-
tance” disliked by Einstein and scrutinized by Einstein, Podolsky, and Rosen. Here we provide a
necessary and sufficient characterization of steering, based on a quantum information processing
task: the discrimination of branches in a quantum evolution, which we dub subchannel discrimina-
tion. We prove that, for any bipartite steerable state, there are instances of the quantum subchannel
discrimination problem for which this state allows a correct discrimination with strictly higher
probability than in absence of entanglement, even when measurements are restricted to local mea-
surements aided by one-way communication. On the other hand, unsteerable states are useless in
such conditions, even when entangled. We also prove that the above steering advantage can be ex-
actly quantified in terms of the steering robustness, which is a natural measure of the steerability
exhibited by the state.

Technical account. See [1] for a complete account of the results.
Introduction. The strongest feature exhibited by entangled systems is non-locality [2]. A weaker feature related

to entanglement is steering : roughly speaking, it corresponds to the fact that one party can induce very different
ensembles for the local state of the other party, beyond what is possible based only on a conceivable classical knowledge
about the other party’s “hidden state” [3, 4]. Steering embodies the “spooky action at a distance”—in the words of
Einstein [5]—identified by Schroedinger [6], scrutinized by Einstein, Podolsky, and Rosen [7], and formally put on
sound ground in [3, 4]. Not all entangled states are steerable, and not all steerable states exhibit nonlocality [3, 4],
but states that exhibit steering allow for the verification of their entanglement in a semi-device independent way:
there is no need to trust the devices used by the steering party, and the ability to determine the conditional states of
the steered party is sufficient [3, 4, 8]. In general, besides its foundational interest, steering is interesting in practice
in bipartite tasks, like quantum key distribution (QKD) [9], where it is convenient and/or appropriate to trust the
devices of one of two parties, but not necessarily of the other party. For example, by exploiting steering it is possible
to obtain key rates unachievable in a full device-independent approach [10], but still assuming less about the devices
than in a standard QKD approach [11]. For these reasons, steering has recently attracted significant interest, both
theoretically and experimentally [12–29], mostly directed to the verification of steering. On the other hand, an answer
to the question “What is steering useful for?” that applies to states that exhibit steering can arguably be considered
limited [8, 11]. Furthermore, the quantification of steering has just started to be addressed [23].

Summary of results. In this paper we fully characterize and quantify steering in an operational way that mirrors
the asymmetric features of steering, and that breaks new ground in the investigation of the usefulness of steering. We
prove that every steerable state is a resource in a quantum information task that we dub subchannel discrimination, a
generalization of channel discrimination, in a practically relevant scenario where measurements can only be performed
locally. Subchannel discrimination is the identification of which branch of a quantum evolution a quantum system
undergoes. It is well known that entanglement between a probe and an ancilla can help in discriminating different
channels [30–40]. In [41] it was proven that every entangled state is useful in some instance of the subchannel
discrimination problem. Ref. [42] raised and analyzed the question of whether such an advantage is preserved when
joint measurements on the output probe and the ancilla are not possible. Here we prove that, when only local
measurements coordinated by forward classical communication are possible, every steerable state remains useful, while
non-steerable entangled states become useless. We further prove that this usefulness, optimized over all instances of
the subchannel discrimination problem, is exactly equal to the robustness of steering—a natural way of quantifying
steering using techniques similar to the ones used in [23], but based on the notion of robustness [43–46]. We argue
that the resulting quantification of steering, besides having operational interpretations both in terms of resilience to
noise and usefulness, is quantitatively more detailed.

Entanglement and steering. In the following we will denote by a ˆ (hat) mathematical entities that are “nor-
malized.” So, for example, a positive semidefinite operator with unit trace is a (normalized) state ρ̂. An ensem-
ble E = {ρa}a for a state ρ̂ is a collection of substates ρa ≤ ρ̂ such that

∑
a ρa = ρ̂. Each substate ρa can
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FIG. 1: Different strategies for subchannel discrimination. (a) No entanglement is used: a probe, initially in the state ρ, undergoes

the quantum evolution Λ̂, with branches Λa, and is later measured, with an outcome b for the measurement described by the
POVM {Qb}b, which is the guess for which branch of the evolution actually took place. (b) The probe B is potentially entangled
with an ancilla A; the output probe and the ancilla are jointly measured. (c) The probe is still potentially entangled with an
ancilla, but the final measurement {Qb}b is restricted to local measurements on the output probe and the ancilla, coordinated
by one-way classical communication (single lines represent quantum systems, double lines classical information): the outcome
x of the measurement performed on the output probe is used to decide which measurement to perform on the ancilla.

be seen as being proportional to a normalized state ρ̂a, ρa = paρ̂a, with pa = Tr(ρa) being the probability of
ρ̂a in the ensemble. An assemblage A = {Ex}x = {ρa|x}a,x is a collection of ensembles Ex for the same state
ρ̂, one for each x, i.e.,

∑
a ρa|x = ρ̂, for all x. Along similar lines, a measurement assemblage MA = {Ma|x}a,x

is a collection of positive operators Ma|x ≥ 0 satisfying
∑
aMa|x = 11 for each x. i.e., a POVM for each x.

For a fixed bipartite state ρ̂AB , every measurement assemblage on Alice gives rise to an assemblage on Bob via
ρBa|x = TrA

(
MA
a|xρ̂AB

)
. On the other hand, every assemblage on Bob {σa|x}a,x has a quantum realization for some

ρ̂AB satisfying ρ̂B = TrA(ρ̂AB) =
∑
x σa|x =: σ̂B and for some measurement assemblage {Ma|x}a,x [47]. An assem-

blage A = {ρa|x}a,x is unsteerable if ρUS

a|x =
∑
λ p(λ)p(a|x, λ)σ̂(λ) =

∑
λ p(a|x, λ)σ(λ), for all a, x, for some probability

distribution p(λ), conditional probability distributions p(a|x, λ), and states σ̂(λ). Here λ indicates a (hidden) clas-
sical random variable, and we introduced also subnormalized states σ(λ) = p(λ)σ̂(λ). We say that an assemblage
{ρa|x}a,x is steerable if it is not unsteerable. A separable (or unentangled) state is one that admits a decomposition
σ̂sep
AB =

∑
λ p(λ)σ̂A(λ) ⊗ σ̂B(λ), for σ̂A(λ), σ̂B(λ) local states, λ a classical label, and p(λ) a probability distribution

[48]. A state is entangled if it is not separable. An unsteerable assemblage can always be thought as the result of local
measurements on some separable state, and a separable state can only give raise to unsteerable assemblages. It follows
that entanglement is a necessary condition for steerability, and, in turn, a steerable assemblage is a clear signature of
entanglement. Interestingly, not all entangled states lead to steerable assemblages by the action of appropriate local
measurement assemblages [3, 4]; we call steerable states those that do, and unsteerable states those that do not. There
exist entangled states that are steerable by one party but not the other (see, e.g., [21]). In this paper, when we refer
to a state being steerable or unsteerable, it is always to be assumed that Alice is the steering party.

Channel and subchannel identification. A subchannel Λ is a linear completely positive map that is trace
non-increasing: Tr(Λ[ρ]) ≤ Tr(ρ), for all states ρ. If a subchannel Λ is trace-preserving, Tr(Λ[ρ]) = Tr(ρ), for all
ρ, we use the ˆ notation and say that Λ̂ is a channel. An instrument I = {Λa}a for a channel Λ̂ is a collec-
tion of subchannels Λa such that Λ̂ =

∑
a Λa. Every instrument has (in principle) a physical realization, where

the (classical) index a can be considered available to some party [49–51]. Fix an instrument {Λa}a for a chan-
nel Λ̂, and consider a measurement {Qb}b on the output space of Λ̂. The joint probability of Λa and Qb for in-
put ρ is p(a, b) := Tr(QbΛa[ρ]) = p(b|a)p(a), where p(a) = Tr(Λa[ρ]) is the probability of the subchannel Λa for
the given input ρ and p(b|a) = p(a, b)/p(a) is the conditional probability of the outcome b given that the sub-
channel Λa took place (see Figure 1(a)). The probability of correctly identifying which subchannel was realized is
pcorr({Λa}a, {Qb}b, ρ) =

∑
a Tr(QaΛa[ρ]). The best success probability in identifying subchannels {Λa}a optimiz-

ing over input and final measurement is pNE
corr({Λa}a) := maxρ max{Qb}b

pcorr({Λa}a, {Qb}b, ρ), where the super-
script NE stands for “no entanglement” (see Fig. 1(a)). One may try to improve the success probability by using
an entangled input state ρAB of an input probe B and an ancilla A (see Fig. 1(b)). This leads to the consider-
ation of the optimal probability of success for a scheme that uses input entanglement and global measurements:
pEcorr({Λa}a) := maxρAB

max{QAB
b }b

pcorr({ΛBa }a, {QABb }b, ρAB). We say that entanglement is useful in discriminating

subchannels {Λa}a if pEcorr({Λa}a) > pNE
corr({Λa}a). It is known that there are instances of subchannel discrimination,

already in the simple setting {Λa}a = { 12 Λ̂0,
1
2 Λ̂0}, where pEcorr ≈ 1� pNE

corr ≈ 0 (see [42] and references therein).

In [41] it was proven that, for any entangled state ρAB , there exists a choice { 12 Λ̂0,
1
2 Λ̂1} such that

pcorr

({
1
2 Λ̂0,

1
2 Λ̂1

}
, ρAB

)
> pNE

corr

({
1
2 Λ̂0,

1
2 Λ̂1

})
, i.e., that every entangled state is useful for the task of (sub)channel
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discrimination. In this sense, every entangled state, independently of how weakly entangled it is, is a resource. Nonethe-
less, exploiting such a resource may require arbitrary joint measurements on the output probe and ancilla [42]. From a
conceptual perspective, one may want to limit measurements to those that can be performed by local operations and
classical communication (LOCC), as this makes the input entangled state the only non-local resource. This limitation
can be justified also from a practical perspective: LOCC measurements are arguably easier to implement, and might be
the only feasible kind of measurements, especially in a scenario where only weakly entangled states can be produced.
We do not know whether every entangled state stays useful for subchannel discrimination when measurements are
restricted to be LOCC. In the following, though, we prove that, if measurements are limited to local operations and
forward communication (one-way LOCC), then only steerable states can and do remain useful.

Steerability and subchannel identification by means of restricted measurements. We indicate a Bob-
to-Alice one-way LOCC measurement, i.e., a POVM, by MB→A = {QB→A

a }a. We define pB→A
corr (I, ρAB) :=

maxMB→A pcorr(IB ,MB→A, ρAB) as the optimal probability of success in the discrimination of the instrument
IB = {ΛBa }a by means of the input state ρAB and one-way LOCC measurements from B to A (see Fig. 1(c)).
We say that ρAB is useful in this restricted-measurement scenario if pB→A

corr (I, ρAB) > pNE
corr(I) for some instrument

I. One checks that no bipartite state ρAB is useful in one-way subchannel identification when the communication
goes from the ancilla to the output probe. Furthermore, if the assemblage resulting from the measurement assemblage
{Na|x}a,x (see Fig. 1(c)) on the ancilla is unsteerable, then one can still achieve an equal or better performance
with an uncorrelated probe. Thus, if ρAB is unsteerable, it is useless for subchannel discrimination with one-way
measurements. This applies also to entangled states that are unsteerable, which are nonetheless useful in channel
discrimination with arbitrary measurements [41].

Main result. We prove that every steerable state is useful in subchannel discrimination with one-way-LOCC
measurements. To state our result in full detail we need to introduce the steering robustness of ρAB ,

RA→B
steer (ρAB) := sup

MA
R(A), R(A) := min

{
t ≥ 0

∣∣∣∣ {ρa|x + t τa|x

1 + t

}
a,x

unsteerable, {τa|x}a,x an assemblage

}
, (1)

where the supremum is over all measurement assemblages MA = {Ma|x}a,x on A, and A is obtained from ρAB with
the measurement assemblage MA on A. The steering robustness R(A) of A is a measure of the minimal “noise”
needed to destroy the steerability of the assemblage A, where such noise is in terms of the mixing with an arbitrary
assemblage {τa|x}a,x. With the notation set, we have the following theorem.

Theorem 1. Every steerable state is useful in one-way subchannel discrimination. More precisely, it holds

sup
I

pB→A
corr (I, ρAB)

pNE
corr(I)

= RA→B
steer (ρAB) + 1, (2)

where the supremum is over all instruments I, i.e., over all subchannel discrimination problems.

Idea of the proof: Using the definitions it is immediate to verify pcorr(IB ,MB→A, ρAB) ≤ (1 +RA→B
steer (ρAB))pNE

corr(I),
for any MB→A and any I. On the other hand, we prove and use the fact that the steering robustness R(A) of
any assemblage A = {ρa|x}a,x can be calculated via semidefinite programming (SDP) [52]. The dual of the SDP
optimization problem provides then information that allows us to construct appropriate instances of the subchannel
discrimination problem, and prove that the bound above can be approximated arbitrarily well. More in detail, the
construction in the proof of Theorem 1 shows that, for any measurement assemblage MA on A such that the
corresponding A exhibit steering with robustness R(A), there exist instances of the subchannel discrimination problem
with restricted measurements where the use of the steerable state ensures a probability of success approximately
(1 +R(A))-fold higher than in the case where no entanglement is used.

Remarks. Theorem 1 implies that the robustnesses R(A) and RA→B
steer (ρAB) have operational meanings not only

in terms of the resilience of steerability versus noise, but in applicative terms. Also, they constitute semi-device-
independent lower bounds on the generalized robustness of entanglement Rg(ρAB) [44, 45], which is an entanglement
measure with operational interpretations itself [53, 54]. Besides these observations, in [1] we argue that the way to
quantify steerability that we have introduced is finer-grained than the approach of [23], while preserving the com-
putational efficiency deriving from the use of semidefinite programming. Many questions remain open for further
investigation: a closed formula for the steerability robustness of pure (maximally entangled) states; whether the
result of Theorem 1 can be strengthened to prove that every steerable state is useful for channel—rather than gen-
eral subchannel—discrimination with restricted measurements; whether general LOCC (rather than one-way LOCC)
measurements can restore the usefulness of all entangled states for (sub)channel discrimination.
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