
Quantum pattern matching fast on average
Ashley Montanaro

Department of Computer Science, University of Bristol, UK.

Technical version: arXiv:1408.1816

One of the most fundamental tasks in computer science is pattern matching: finding some desired
data (the pattern) within a larger data set (the text). This problem has been of interest for decades,
both in its own right and as part of more complicated questions in text processing, bioinformatics
and image processing.

Here we consider the d-dimensional pattern matching problem, for arbitrary d = O(1). Two
examples of this problem are shown in Figure 1 below. We are given access to a text T and a
pattern P over an alphabet Σ with |Σ| = q. Our task is to find an instance of P within T , if such
an instance exists. That is, writing [n] := {0, . . . , n − 1} and thinking of T and P as functions
T : [n]d → Σ, P : [m]d → Σ, we are required to output s ∈ [n −m]d such that T (s + x) = P (x)
for all x ∈ [m]d, if such an s exists; otherwise, we should output “not found”. We call any function
of the form S : [k]d → Σ a string, and think of strings interchangeably as functions or k × · · · × k
arrays of elements of Σ.

The classical KMP algorithm of Knuth, Morris and Pratt [7] from 1977 solves the pattern
matching problem for d = 1 in time Θ(n+m) in the worst case. This is clearly optimal, as every
classical pattern-matching algorithm which is correct on all inputs must inspect every character
of the pattern and the text. However, significantly improved runtimes can be achieved for more
typical inputs. Consider a model where each character of the text is chosen at random from Σ, and
the pattern is either uniformly random too (in which case, if it is long enough, it will not match the
text with high probability), or is chosen to be a random substring of the text. A simple algorithm
was given by Knuth [7, Section 8] which runs in time O(n(logqm)/m+m) with high probability on
such random inputs, while still preserving efficient worst-case behaviour. Observe that this runtime
is substantially sublinear for large m, but never better than O(

√
n log n).

Shortly after this algorithm was developed, Yao proved an Ω((n/m) logqm) lower bound for
the 1-dimensional matching problem, for random text and pattern [11]. The bound extends to give
a Ω((n/m)d(logqm)) lower bound for the d-dimensional problem [6]. More recently, an algorithm

which runs in time O((n/m)d logqm+md) for the general d-dimensional problem, for random text

and pattern, was given by Kärkkäinen and Ukkonen [6]. This is thus optimal up to the O(md)
term, which corresponds to preprocessing time for the pattern.

A quantum pattern-matching algorithm for the 1-dimensional case has been presented by
Ramesh and Vinay [10]. The algorithm runs in time Õ(

√
n+
√
m) and hence achieves a square-root

speedup over the best possible classical algorithm’s worst-case complexity. However, the sublinear
classical results mentioned above raise the following question: could there be a quantum pattern-
matching algorithm which significantly outperforms its classical counterparts on average-case inputs
which are more likely to occur in practice?

T = S C H R O D I N G E R

P = R O D I N

T = P =

Figure 1: Examples of 1D and 2D pattern matching problems, with matches highlighted.

1

Statement of results

We give a quantum algorithm which, for most instances of the d-dimensional pattern matching
problem, is super-polynomially faster than the best possible classical algorithm.

Theorem 1. Assume m = ω(log n). Let T : [n]d → Σ be picked uniformly at random. Let
P : [m]d → Σ be picked either (a) by choosing an arbitrary m × · · · × m substring of T , or (b)
by choosing each element of P uniformly at random from Σ. Then there is a quantum algorithm
which runs in time Õ((n/m)d/22O(d3/2

√
logm)) and determines which is the case. In case (a), the

algorithm also outputs the position at which P matches T . The algorithm fails with probability
O(1/nd), taken over both the choice of T and P , and the algorithm’s internal randomness.

Any classical bounded-error algorithm for the same problem must make Ω̃((n/m)d+nd/2) queries
to T and P in total.

The Õ, Ω̃ notation suppresses factors logarithmic in m and n. The time complexity is stated
in the standard quantum circuit model, assuming that a query to T or P uses time O(1). We can
think of T and P as either easily evaluated oracle functions in the query complexity model, or data
stored in an efficiently accessible quantum random-access memory [4].

Observe that, for any fixed d, 2O(d3/2
√
logm) = o(mε) for any ε > 0. When m is large, Theorem

1 thus demonstrates a super-polynomial separation between quantum and classical complexity
(when m is small, e.g. O(log n), straightforward use of Grover’s algorithm is faster). For example,

when m = Ω(n), we get a quantum algorithm running in time Õ(2O(d3/2
√
logn)), as opposed to

the best classical complexity of Ω̃(nd/2). The omitted constants in the O(d3/2
√

logm) term in
the exponent are not unreasonably high. For d = 1, for example, the algorithm’s runtime is

Õ(
√
n/m 22.68...

√
log2m). Theorem 1 is a rare example of a super-polynomial average-case separation

between quantum and classical computation for a natural problem and a natural distribution on
the input. An exponential average-case separation was previously proven [2] for a related problem
(an oracular hidden shift problem over Zn2), but that problem is arguably less natural than pattern
matching.

Theorem 1 is based on a more general pattern matching result, which holds for non-random
patterns and texts. In order to state this result more formally, we need some notation. For any
string S : [n]d → Σ, we define a new string S.k : [n− k+ 1]d → Σkd , where S.k(x1, . . . , xd) is equal
to the size k×· · ·×k substring of S beginning at position x1, . . . , xd. Formally, for any f : [n]d → Σ,
s ∈ [n]d, k ∈ [n−s], let fs,k : [k]d → Σ be defined by fs,k(z1, . . . , zd) = f(s1 +z1, . . . , sn+zn). Then

S.k(x1, . . . , xd) = Ss,k.

An example of this operation is shown in Figure 2.

Define the m-injectivity length of S, υ(S,m), to be the minimal k such that S.ks,m is injective for

all s ∈ [n −m]d. Thus υ(S,m) ≤ ν if every m × · · · ×m substring of S.ν is injective. For any S,
1 ≤ υ(S,m) ≤ m. Finally, define υ(S) := υ(S, n); υ(S) is the minimal k such that S.k is injective.
Then the most general result we have is as follows:

Theorem 2. Fix d = O(1). Let T : [n]d → Σ and P : [m]d → Σ satisfy υ(T,m), υ(P) ≤ ν ≤ m/2,
for some ν. Further assume that, for every offset s such that P does not match T at that offset, the
fraction of positions x ∈ [m]d where P (x) 6= T (x + s) is at least γ. Then there is a bounded-error
quantum algorithm which outputs s ∈ [m]d such that P matches T at offset s, if such an s exists;
otherwise, the algorithm outputs “not found”. The algorithm makes

O

(n log2m 2
√

(2 log2 3)d log2m

m

)d/2(
ν logm 2

√
(2 log2 3)d log2m +

1
√
γ

)
2

Figure 2: Converting a non-injective 2D string S into an injective string S.3.

queries to each of T and P . The runtime is the same up to a polylog(m) factor.

Theorem 2 may appear somewhat hard to digest. The intuition is that the algorithm is efficient,
i.e. has runtime close to O((n/m)d/2), when: the strings formed by concatenating all short sub-
strings of both T and P are injective; and offsets where there is no match can be efficiently tested
and discarded. The algorithm can thus be seen as achieving a speedup in a scenario somewhat
similar to that considered in the field of property testing [9], where it has the promise that each
potential match is either actually a match, or is far from being a match.

Techniques

Theorem 2 is ultimately based around the use of a quantum algorithm for finding hidden shifts
in injective functions f : Zd2n → Σ. The algorithm is a variant of algorithms of Kuperberg [8].
Kuperberg’s work described several algorithms: two for finding hidden shifts in injective functions
f : Z2n → Σ, and one for finding hidden shifts in general abelian groups. The algorithm given
here achieves essentially the same asymptotic complexity as the best algorithm given in [8], and
appears somewhat simpler to analyse. In particular, we include a full proof of its correctness and
complexity.

To use the algorithm, we first make the pattern and text injective. This is similar to the
“injectivisation” idea used by Gharibi [3] in the context of quantum algorithms for abelian hidden
shift problems, but here we need a slightly different notion, as used by Knuth [7], to ensure we
preserve matching after injectivisation. We then apply the hidden shift algorithm by guessing an
offset where the pattern matches the text. If our guess is fairly close, then the algorithm succeeds in
finding the actual offset where the pattern matches. This guessing process is then wrapped within
the use of the bounded-error variant of Grover’s search algorithm [5] to obtain the final result.
Theorem 1 is then derived by simply calculating the quantities ν, γ that occur in Theorem 2 for
random strings.

Kuperberg showed in [8] that, based on a similar idea of guessing offsets, his algorithms gave
a super-polynomial quantum speedup for the task of finding an injective pattern of length m,
promised to be hidden in an injective text of length 2m. The contribution here is thus to generalise
this idea to arbitrary dimensions d > 1, to remove the restriction on the length of the text, and to
relax the injectivity constraint. We also modify the promise that the pattern is guaranteed to be
contained in the text to the promise that any non-matches can be tested efficiently. Observe that a
constraint of this form is required if one seeks a runtime which is o(md/2). Imagine we are told an
offset at which the pattern is claimed to match the text. If we have no lower bound on the number
of positions at which it does not match the text if the claim is false, then verifying this claimed
match would require Ω(md/2) quantum queries in the worst case [1].

3

References

[1] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum
computing. SIAM J. Comput., 26(5):1510–1523, 1997. quant-ph/9701001.

[2] D. Gavinsky, M. Roetteler, and J. Roland. Quantum algorithm for the Boolean hidden shift
problem. In Proc. 17th International Computing & Combinatorics Conference (COCOON’11),
pages 158–167, 2011. arXiv:1103.3017.

[3] M. Gharibi. Reduction from non-injective hidden shift problem to injective hidden shift prob-
lem. Quantum Inf. Comput., 13(3&4):221–230, 2013. arXiv:1207.4537.

[4] V. Giovannetti, S. Lloyd, and L. Maccone. Quantum random access memory. Phys. Rev. Lett.,
100:160501, 2008. arXiv:0708.1879.

[5] P. Høyer, M. Mosca, and R. de Wolf. Quantum search on bounded-error inputs. In Proc.
30th International Conference on Automata, Languages and Programming (ICALP’03), pages
291–299, 2003. quant-ph/0304052.

[6] J. Kärkkäinen and E. Ukkonen. Two and higher dimensional pattern matching in optimal
expected time. In Proc. 5th ACM-SIAM Symp. Discrete Algorithms, pages 715–723, 1994.

[7] D. Knuth, J. Morris, Jr., and V. Pratt. Fast pattern matching in strings. SIAM J. Comput.,
6(2):323–350, 1977.

[8] G. Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden subgroup
problem. SIAM J. Comput., 35(1):170–188, 2005. quant-ph/0302112.

[9] A. Montanaro and R. de Wolf. Quantum property testing, 2013. arXiv:1310.2035.

[10] H. Ramesh and V. Vinay. String matching in Õ(
√
n+
√
m) quantum time. Journal of Discrete

Algorithms, 1:103–110, 2003. quant-ph/0011049.

[11] A. Yao. The complexity of pattern matching for a random string. SIAM J. Comput., 8(3):368–
387, 1979.

4

