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Abstract

Recently, Bravyi and König have shown that there is a trade-off between fault-tolerantly imple-
mentable logical gates and geometric locality of stabilizer codes. They consider locality-preserving
operations which are implemented by a constant-depth geometrically-local circuit and are thus
fault-tolerant by construction. In particular, they shown that, for local stabilizer codes in D spa-
tial dimensions, locality preserving gates are restricted to a set of unitary gates known as the D-th
level of the Clifford hierarchy. In this paper, we elaborate this idea and provide several extensions
and applications of their characterization in various directions.

First, we present a new no-go theorem for self-correcting quantum memory [17]. Namely, we
prove that a three-dimensional stabilizer Hamiltonian with a locality-preserving implementation of a
non-Clifford gate cannot have a macroscopic energy barrier. This result implies that in Haah’s Cubic
code [18] and Michnicki’s [19] welded code non-Clifford gates do not admit such an implementation.

Second, we prove that the code distance of a D-dimensional local stabilizer code with non-trivial
locality-preserving m-th level Clifford logical gate is upper bounded by O(LD+1−m). For codes with
non-Clifford gates (m > 2), this improves the previous best bound by Bravyi and Terhal. Bombin
and Martin-Delgado’s topological color codes saturate the bound for m = D.

Third we prove that a qubit loss threshold of codes with non-trivial transversal m-th level
Clifford logical gate is upper bounded by 1/m. As such, no family of fault-tolerant codes with
transversal gates in increasing level of the Clifford hierarchy may exist. This result applies to
arbitrary stabilizer and subsystem codes, and is not restricted to geometrically-local codes.

Finally, we extend the result of Bravyi and König to subsystem codes. A technical difficulty is
that, unlike stabilizer codes, the so-called union lemma does not apply to subsystem codes. This
problem is avoided by assuming the presence of error threshold in a subsystem code, and the same
conclusion as Bravyi-König is recovered.

Quantum error-correcting codes constitute an indispensable ingredient in the roadmap to fault-
tolerant quantum computation as they offer the framework of enabling imperfect quantum gates and
resources to implement arbitrarily reliable quantum computation [2, 3]. An essential feature for such
codes is to admit a fault-tolerant implementation of a universal gate-set where physical errors should
propagate in a benign and controlled manner. A paragon for fault-tolerant implementation of logical
gates is provided by transversal unitary operations, i.e. single qubit rotations acting independently
on each physical qubit.

However, Eastin and Knill have proved that the set of transversal gates constitutes a finite group,
and hence is not universal for quantum computation [4], suggesting a tension between computational
power and fault-tolerance. Recently, Bravyi and König have further sharpened this tension for topo-
logical stabilizer codes supported on a lattice with geometrically local generators [5]. By extending
their consideration to logical gates implemented by constant depth local quantum circuits as feasible
proxy, they have shown that, in D spatial dimensions, fault-tolerantly implementable logical gates
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are restricted to a set of unitary gates, known as the D-th level of the Clifford hierarchy [6]. This
result establishes a connection between two seemingly unrelated notions; fault-tolerance and geometric
locality.

The result by Bravyi and König (BK) is motivated by considerations of topological stabilizer codes,
which are also likely to suggest a host of future generalizations. In this paper, we begin to address
open questions posed by the work of Bravyi and König.

Clifford hierarchy.- As in BK [5], the tensor product Pauli operators on n qubits (denoted by
Pauli = 〈Xj , Yj , Zj〉j∈[1,n]) and the corresponding Clifford hierarchy [6] will play a central role. We
provide a formal definition for the m-th level of the Clifford hierarchy Pm.

Definition 1. We define the Clifford hierarchy as P0 ≡ C (i.e. global complex phases), and then
recursively as

Pm+1 = {U : ∀P ∈ Pauli, UPU †P † ∈ Pm}. (1)

Note that despite using a commutator in place of conjugation, the above definition coincides with
the usual one for m ≥ 2 [6, 5]. P1 is a group of Pauli operators with global complex phases. P2
coincides with the Clifford group and includes the Hadamard gate H, π/2 phase shift and the CNOT
gate. P3 includes some non-Clifford gates such as π/4 phase shift and the Toffoli gate. π/2m−1 phase
shift belongs to Pm. Note that Pm is a set and is not a group for m ≥ 3.

The Gottesman-Knill theorem assures that any quantum circuit composed exclusively from Clifford
gates in P2, with computational basis preparation and measurement, may be efficiently simulated by
a classical computer [7]. In contrast, incorporating any additional non-Clifford gate to P2 results
in a universal gate set. In theory, gates in the Clifford group can be implemented with arbitrarily
high precision by using concatenated stabilizer codes [8] or topological codes. Realistic systems also
offer decoherence-free implementation of some Clifford gates. For this reason, it is important to
fault-tolerantly perform non-Clifford logical gates outside of P2.

Summary of results

Let us now summarize the main contributions of this work. We provide a self-contained and arguably
simpler derivation of BK’s result. We derive a new technical lemma which is the key to assess fault-
tolerant implementability of logical gates for both stabilizer and subsystem [20, 21] error-correcting
codes. In addition, there are four original contributions which we now outline.

No-go result for self-correction.- First of all, we show that the property of self-correction
imposes a further restriction on logical gates implementable by constant depth local circuits. Namely,
we find that the assumption of having no string-like logical operators reduces the level of the imple-
mentable Clifford hierarchy by one with respect to BK’s result.

Theorem 2. [Self-correction] If a stabilizer Hamiltonian, consisting of geometrically-local bounded-
norm terms in D spacial dimensions, has a macroscopic energy barrier, the set of logical gates, ad-
mitting a locality-preserving implementation, is restricted to PD−1.

This theorem allows us to obtain a new no-go result for self-correcting quantum memory in three
spatial dimensions; a three-dimensional topological stabilizer Hamiltonian with a locality-preserving
non-Clifford gate cannot simultaneously have a macroscopic energy barrier. The result establishes
a somewhat surprising connection between ground state properties and excitation energy landscape.
While technically simple, this observation is arguably the most interesting.

Upper bound on code distance.- Our second result concerns a tradeoff between the code dis-
tance and locality-preserving implementability of logical gates. Namely, we find that implementability
of logical gates from the higher-level Clifford hierarchy reduces an upper bound on the code distance
of a topological stabilizer code.
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Theorem 3. [Code distance] If a stabilizer code with geometrically-local generators in D spatial
dimensions admits a locality-preserving implementation of a logical gate U ∈ Pm for m ≥ 2 (but
U 6∈ Pm−1), then its code distance is upper bounded by d ≤ O(LD+1−m).

For a code with a non-Clifford gate (m > 2), this result improves the previous best bound d ≤
O(LD−1) for topological stabilizer codes [10]. The bound is found to be tight for m = D as Bombin
and Martin-Delgado’s topological color codes saturates it [11, 12, 13, 14]. The theorem also applies
to a topological subsystem code if its stabilizer subgroup admits a complete set of geometrically local
generators. Such subsystem codes include Bombin’s topological gauge color code [14].

Loss threshold.- Our third result relates the loss threshold in stabilizer and subsystem error-
correcting codes with the set of transversally implementable logical gates.

Theorem 4. [Loss threshold] Given a family of subsystem codes with a loss tolerance pl > 1/n for
some natural number n. Then, any transversally implementable logical gate must belong to Pn−1.

We would like to emphasize that the above theorem does not assume geometric locality of gener-
ators or lattice structures, and holds for arbitrary stabilizer and subsystem codes.

Subsystem code and the Clifford hierarchy.- Finally, the main technical result is to generalize
BK’s result to subsystem codes with local generators. A difficulty is that the so-called union lemma
does not apply to a topological subsystem code [15, 16]. Minimal supplementary assumptions, such
as a finite loss threshold for the code and a logarithmically increasing code distance, are required in
order to recover the same thesis as BK’s for locality-preserving logical gates.

Theorem 5. [Subsystem code] Consider a family of subsystem codes with geometrically local gauge
generators in D spatial dimensions such that the code has a constant loss threshold and a code distance
growing at least logarithmically in the number of physical qubits. Then, any locality-preserving logical
unitary, fully supported on an m-dimensional region (m ≤ D), has a logical action included in Pm.

Supplementary assumptions arise from considerations on fault-tolerance of the code. A finite loss
threshold is necessary for a finite error threshold against depolarization. A logarithmically increasing
code distance is necessary for the recovery failure probability to vanish at least polynomially in the
number of physical qubits. Supplementary assumptions are not required for subsystem codes with
geometrically local stabilizer generators as the union lemma holds for such codes.

Conclusions

We have provided several extensions of BK’s characterization of fault-tolerantly implementable logical
gates. Our results are summarized as follows: (i) A three-dimensional stabilizer Hamiltonian with
a fault-tolerantly implementable non-Clifford gate is not self-correcting. (ii) The code distance of a
D-dimensional topological stabilizer code with non-trivial m-th level logical gate is upper bounded by
O(LD+1−m). (iii) A loss threshold of a subsystem code with non-trivial m-th level transversal logical
gate is upper bounded by 1/m. (iv) Fault-tolerantly implementable logical gates in a D-dimensional
topological subsystem code belong to the D-th level PD in the presence of a finite error threshold.

While our results impose important constraints on the resources necessary to achieve universal
fault-tolerant quantum computation they definitely do not exclude it. They are a guide to constructing
a checklist of necessary resources. In particular, the non-local classical processing associated to gauge-
fixing [22] in gauge-color codes [23] or for magic state distillation [24] or using complementary notions
of transversality in concatenated codes [25] are some of the possible avenues to avoid the hypotheses
of our results and achieve universal computation assuming reasonable sets of resources.
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